
Find five rational numbers between $\dfrac{3}{5}{\text{ and }}\dfrac{4}{5}.$
Answer
550.2k+ views
Hint- As we know that rational numbers are represented as $\dfrac{{\text{p}}}{q}$ . And we have to find more rational numbers between $\dfrac{3}{5}{\text{ and }}\dfrac{4}{5}.$ So, we multiply the numerator and denominator by the same number.
“Complete step-by-step answer:”
Given numbers are $\dfrac{3}{5}{\text{ and }}\dfrac{4}{5}.$
So, we have to find five numbers, we will multiply the given numbers by $\dfrac{6}{6}$
Let the number ${\text{A = }}\dfrac{3}{5}{\text{ and B = }}\dfrac{4}{5}$
Now, multiply A by $\dfrac{6}{6}$ , we obtain
${\text{A = }}\dfrac{3}{5} \times \dfrac{6}{6} = \dfrac{{18}}{{30}}$
And, multiply B by $\dfrac{6}{6}$ , we obtain
${\text{B = }}\dfrac{4}{5} \times \dfrac{6}{6} = \dfrac{{24}}{{30}}$
So, between $\dfrac{{18}}{{30}}{\text{ and }}\dfrac{{24}}{{30}}$ , we have to find rational numbers
Here, $\dfrac{{18}}{{30}} > \dfrac{{19}}{{30}} > \dfrac{{20}}{{30}} > \dfrac{{21}}{{30}} > \dfrac{{22}}{{30}} > \dfrac{{23}}{{30}} > \dfrac{{24}}{{30}}$
Hence five rational numbers between ${\text{A = }}\dfrac{3}{5}{\text{ and B = }}\dfrac{4}{5}$ are
$\dfrac{{19}}{{30}},\dfrac{{20}}{{30}},\dfrac{{21}}{{30}},\dfrac{{22}}{{30}},\dfrac{{23}}{{30}}$
Note- To solve these types of questions, basic definitions of numbers, their properties must be remembered. Some definitions such as Irrational numbers have decimal expansion that neither terminate nor periodic and cannot be expressed as fraction for any integers. This question can also be done by continuous finding the average of the given number first and then the average of numbers obtained.
“Complete step-by-step answer:”
Given numbers are $\dfrac{3}{5}{\text{ and }}\dfrac{4}{5}.$
So, we have to find five numbers, we will multiply the given numbers by $\dfrac{6}{6}$
Let the number ${\text{A = }}\dfrac{3}{5}{\text{ and B = }}\dfrac{4}{5}$
Now, multiply A by $\dfrac{6}{6}$ , we obtain
${\text{A = }}\dfrac{3}{5} \times \dfrac{6}{6} = \dfrac{{18}}{{30}}$
And, multiply B by $\dfrac{6}{6}$ , we obtain
${\text{B = }}\dfrac{4}{5} \times \dfrac{6}{6} = \dfrac{{24}}{{30}}$
So, between $\dfrac{{18}}{{30}}{\text{ and }}\dfrac{{24}}{{30}}$ , we have to find rational numbers
Here, $\dfrac{{18}}{{30}} > \dfrac{{19}}{{30}} > \dfrac{{20}}{{30}} > \dfrac{{21}}{{30}} > \dfrac{{22}}{{30}} > \dfrac{{23}}{{30}} > \dfrac{{24}}{{30}}$
Hence five rational numbers between ${\text{A = }}\dfrac{3}{5}{\text{ and B = }}\dfrac{4}{5}$ are
$\dfrac{{19}}{{30}},\dfrac{{20}}{{30}},\dfrac{{21}}{{30}},\dfrac{{22}}{{30}},\dfrac{{23}}{{30}}$
Note- To solve these types of questions, basic definitions of numbers, their properties must be remembered. Some definitions such as Irrational numbers have decimal expansion that neither terminate nor periodic and cannot be expressed as fraction for any integers. This question can also be done by continuous finding the average of the given number first and then the average of numbers obtained.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
How many ounces are in 500 mL class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE
