How do you find extraneous solutions from radical equations?
Answer
Verified
440.7k+ views
Hint: An extraneous solution is a solution value of the variable in the equations, that is found by solving the given equation algebraically but it is not a solution of the given equation. We get these types of solutions sometimes when we solve radical equations. Radical equations are equations in which the variable is under a radical. To find the solution of a radical equation, we need to take the radical expression to one side of the equations. If there is more than one radical expression, take one at a time.
Complete step by step answer:
Let’s take an example of radical expression \[x+1=\sqrt{7x+15}\]. We need to solve this equation. Squaring both sides of the above equation, we get
\[\Rightarrow {{\left( x+1 \right)}^{2}}={{\left( \sqrt{7x+15} \right)}^{2}}\]
simplifying the above equation, we get
\[\begin{align}
& \Rightarrow {{x}^{2}}+2x+1=7x+15 \\
& \Rightarrow {{x}^{2}}-5x-14=0 \\
\end{align}\]
We can find the roots of the above quadratic equation, by using the formula method, as follows
\[\begin{align}
& \Rightarrow x=\dfrac{-(-5)\pm \sqrt{{{\left( -5 \right)}^{2}}-4(1)(-14)}}{2(1)} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{81}}{2} \\
& \Rightarrow x=\dfrac{5\pm 9}{2} \\
\end{align}\]
\[\Rightarrow x=\dfrac{5+9}{2}=\dfrac{14}{2}\] or \[x=\dfrac{5-9}{2}=\dfrac{-4}{2}\]
\[\therefore x=7\] or \[x=-2\]
But if we substitute \[x=-2\] in the equation, we get
\[\begin{align}
& -2+1=\sqrt{7(-2)+15} \\
& \Rightarrow -1=1 \\
\end{align}\]
Which is not correct. Hence, \[x=-2\] is not a solution of the given radical equation. Thus \[x=-2\] is an extraneous solution for the given equation.
Note: We should know when an extraneous solution occurs. Extraneous solutions of an equation are solutions that occur when a radical expression that has an even index, such as 2, is raised to its power to find the solution of an equation.
In the above example, as the radical power has an even index, we get \[x=-2\] as an extraneous solution of the equation.
Complete step by step answer:
Let’s take an example of radical expression \[x+1=\sqrt{7x+15}\]. We need to solve this equation. Squaring both sides of the above equation, we get
\[\Rightarrow {{\left( x+1 \right)}^{2}}={{\left( \sqrt{7x+15} \right)}^{2}}\]
simplifying the above equation, we get
\[\begin{align}
& \Rightarrow {{x}^{2}}+2x+1=7x+15 \\
& \Rightarrow {{x}^{2}}-5x-14=0 \\
\end{align}\]
We can find the roots of the above quadratic equation, by using the formula method, as follows
\[\begin{align}
& \Rightarrow x=\dfrac{-(-5)\pm \sqrt{{{\left( -5 \right)}^{2}}-4(1)(-14)}}{2(1)} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{81}}{2} \\
& \Rightarrow x=\dfrac{5\pm 9}{2} \\
\end{align}\]
\[\Rightarrow x=\dfrac{5+9}{2}=\dfrac{14}{2}\] or \[x=\dfrac{5-9}{2}=\dfrac{-4}{2}\]
\[\therefore x=7\] or \[x=-2\]
But if we substitute \[x=-2\] in the equation, we get
\[\begin{align}
& -2+1=\sqrt{7(-2)+15} \\
& \Rightarrow -1=1 \\
\end{align}\]
Which is not correct. Hence, \[x=-2\] is not a solution of the given radical equation. Thus \[x=-2\] is an extraneous solution for the given equation.
Note: We should know when an extraneous solution occurs. Extraneous solutions of an equation are solutions that occur when a radical expression that has an even index, such as 2, is raised to its power to find the solution of an equation.
In the above example, as the radical power has an even index, we get \[x=-2\] as an extraneous solution of the equation.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE