
Find \[\dfrac{{dy}}{{dx}}\] , when \[x = {e^t} - 3\] and \[y = {e^t} + 5\]
Answer
547.5k+ views
Hint: Derivation of a function is basically a measure of sensitivity to change of function value with change in the argument where argument refers to the input whose output is to be found. Derivatives are useful in finding the slope of an equation, maxima, and minima of a function when the slope is zero and is also used to check a function, whether it is increasing or decreasing.
Complete step-by-step answer:
In this question the given two functions have a variable \[t\] , so we will differentiate both the equations as a function of \[t\] and then we will find the desired equation.
Given the function
\[x = {e^t} - 3\]
Now since the function has the input as variable \[t\] so we will differentiate the function with respect to \[t\] , hence differentiating the function with respect to \[t\] , we get
\[
\dfrac{d}{{dt}}\left( x \right) = \dfrac{d}{{dt}}\left( {{e^t} - 3} \right) \\
\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {{e^t}} \right) - \dfrac{d}{{dt}}\left( 3 \right) \\
\dfrac{{dx}}{{dt}} = {e^t}\left\{ {\because \dfrac{{d\left( {{e^t}} \right)}}{{dt}} = {e^t}} \right\} \;
\]
Hence we get \[\dfrac{{dx}}{{dt}} = {e^t} - - (i)\]
Now for the function
\[y = {e^t} + 5\]
Here again we can see the function has the input as variable \[t\] so we will differentiate the function with respect to \[t\] , hence differentiating the function with respect to \[t\] , we get
\[
\dfrac{d}{{dt}}\left( y \right) = \dfrac{d}{{dt}}\left( {{e^t} + 5} \right) \\
\dfrac{{dy}}{{dt}} = \dfrac{{d\left( {{e^t}} \right)}}{{dt}} + \dfrac{{d\left( 5 \right)}}{{dt}} \\
\dfrac{{dy}}{{dt}} = {e^t}\left\{ {\because \dfrac{{d\left( {{e^t}} \right)}}{{dt}} = {e^t}} \right\} \;
\]
Hence we get \[\dfrac{{dy}}{{dt}} = {e^t} - - (ii)\]
Now since we need to find the value of \[\dfrac{{dy}}{{dx}}\] , hence we will divide equation (ii) by equation (i), we get
\[\dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{{e^t}}}{{{e^t}}}\]
By solving
\[
\dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{{e^t}}}{{{e^t}}} \\
\dfrac{{dy}}{{dx}} = 1 \;
\]
Hence the value of \[\dfrac{{dy}}{{dx}} = 1\]
So, the correct answer is “1”.
Note: As a constant term does not contain any variables with them when they are differentiated, then their value is zero. Derivation of a function is represented in \[\dfrac{a}{b}\] , where \[a\] is the function which is being differentiated and b its independent variable by which function is being differentiated written as \[\dfrac{{dy}}{{dx}}\] where y is the function.
Complete step-by-step answer:
In this question the given two functions have a variable \[t\] , so we will differentiate both the equations as a function of \[t\] and then we will find the desired equation.
Given the function
\[x = {e^t} - 3\]
Now since the function has the input as variable \[t\] so we will differentiate the function with respect to \[t\] , hence differentiating the function with respect to \[t\] , we get
\[
\dfrac{d}{{dt}}\left( x \right) = \dfrac{d}{{dt}}\left( {{e^t} - 3} \right) \\
\dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {{e^t}} \right) - \dfrac{d}{{dt}}\left( 3 \right) \\
\dfrac{{dx}}{{dt}} = {e^t}\left\{ {\because \dfrac{{d\left( {{e^t}} \right)}}{{dt}} = {e^t}} \right\} \;
\]
Hence we get \[\dfrac{{dx}}{{dt}} = {e^t} - - (i)\]
Now for the function
\[y = {e^t} + 5\]
Here again we can see the function has the input as variable \[t\] so we will differentiate the function with respect to \[t\] , hence differentiating the function with respect to \[t\] , we get
\[
\dfrac{d}{{dt}}\left( y \right) = \dfrac{d}{{dt}}\left( {{e^t} + 5} \right) \\
\dfrac{{dy}}{{dt}} = \dfrac{{d\left( {{e^t}} \right)}}{{dt}} + \dfrac{{d\left( 5 \right)}}{{dt}} \\
\dfrac{{dy}}{{dt}} = {e^t}\left\{ {\because \dfrac{{d\left( {{e^t}} \right)}}{{dt}} = {e^t}} \right\} \;
\]
Hence we get \[\dfrac{{dy}}{{dt}} = {e^t} - - (ii)\]
Now since we need to find the value of \[\dfrac{{dy}}{{dx}}\] , hence we will divide equation (ii) by equation (i), we get
\[\dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{{{e^t}}}{{{e^t}}}\]
By solving
\[
\dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{{e^t}}}{{{e^t}}} \\
\dfrac{{dy}}{{dx}} = 1 \;
\]
Hence the value of \[\dfrac{{dy}}{{dx}} = 1\]
So, the correct answer is “1”.
Note: As a constant term does not contain any variables with them when they are differentiated, then their value is zero. Derivation of a function is represented in \[\dfrac{a}{b}\] , where \[a\] is the function which is being differentiated and b its independent variable by which function is being differentiated written as \[\dfrac{{dy}}{{dx}}\] where y is the function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

