
Find $\dfrac{dy}{dx}$ if:
1. $\sqrt{x}+\sqrt{y}=0$
2. ${{e}^{x+y}}=\cos \left( x-y \right)$
3. ${{x}^{y}}.{{y}^{x}}={{\left( x+y \right)}^{x+y}}$
4. ${{e}^{x}}-y=\log \left( \dfrac{x}{y} \right)$
Answer
514.5k+ views
Hint: For solving this question you should know about the differentiation of functions. In these problems we will differentiate the given functions with respect to $x$ and thus we will get the solution of all these.
Complete step by step answer:
According to the problem we have to find the $\dfrac{dy}{dx}$ of all the given functions.
1. $\sqrt{x}+\sqrt{y}=0$
If we differentiate this, then,
$\begin{align}
& \dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}.\dfrac{dy}{dx}=0 \\
& \dfrac{dy}{dx}.\dfrac{1}{2\sqrt{y}}=-\dfrac{1}{2\sqrt{x}} \\
& \dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}}.2\sqrt{y}=-\dfrac{\sqrt{y}}{\sqrt{x}} \\
\end{align}$
2. ${{e}^{x+y}}=\cos \left( x-y \right)$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& {{e}^{x+y}}.\left( 1+\dfrac{dy}{dx} \right)=-\sin \left( x-y \right).\left[ 1-\dfrac{dy}{dx} \right] \\
& {{e}^{x+y}}+{{e}^{x+y}}.\dfrac{dy}{dx}=-\sin \left( x-y \right)+\dfrac{dy}{dx}.\sin \left( x-y \right) \\
& \dfrac{dy}{dx}\left( {{e}^{x+y}}-\sin \left( x-y \right) \right)=-\sin \left( x-y \right)-{{e}^{x+y}} \\
& \dfrac{dy}{dx}=\dfrac{-\left( \sin \left( x-y \right)+{{e}^{x+y}} \right)}{\left( -\sin \left( x-y \right)+{{e}^{x+y}} \right)} \\
\end{align}$
3. ${{x}^{y}}.{{y}^{x}}={{\left( x+y \right)}^{x+y}}$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& {{y}^{x}}.y.{{x}^{y-1}}+{{x}^{y}}.x{{y}^{x-1}}.\dfrac{dy}{dx}=\left[ \left( x+y \right){{\left( x+y \right)}^{\left( x+y-1 \right)}} \right]\times \left( 1+\dfrac{dy}{dx} \right) \\
& \Rightarrow {{y}^{\left( x+1 \right)}}.{{x}^{\left( y-1 \right)}}+{{x}^{\left( y+1 \right)}}.{{y}^{\left( x-1 \right)}}.\dfrac{dy}{dx}={{\left( x+y \right)}^{\left( x+y \right)}}+{{\left( x+y \right)}^{\left( x+y \right)}}.\dfrac{dy}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{\left( x+y \right)}^{\left( x+y \right)}}-{{y}^{\left( x+1 \right)}}.{{x}^{\left( y-1 \right)}}}{{{x}^{\left( y+1 \right)}}.{{y}^{\left( x-1 \right)}}-{{\left( x+y \right)}^{\left( x+y \right)}}} \\
\end{align}$
4. ${{e}^{x}}-y=\log \left( \dfrac{x}{y} \right)$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& \Rightarrow {{e}^{x}}-\dfrac{dy}{dx}=\left( \dfrac{y}{x} \right)\left( \dfrac{-1}{{{y}^{2}}}.\dfrac{dy}{dx} \right) \\
& \Rightarrow {{e}^{x}}-\dfrac{dy}{dx}=\dfrac{-1}{xy}.\dfrac{dy}{dx} \\
& \Rightarrow \left( -1+\dfrac{1}{xy} \right)\dfrac{dy}{dx}=-\left( {{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}\left( \dfrac{-xy+1}{xy} \right)=-{{e}^{x}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( -{{e}^{x}} \right).xy}{1-xy} \\
\end{align}$
Note: While solving these types of questions you have to be careful about the power of the variable and also for the variable which is going to differentiate and thus we will get the right answers.
Complete step by step answer:
According to the problem we have to find the $\dfrac{dy}{dx}$ of all the given functions.
1. $\sqrt{x}+\sqrt{y}=0$
If we differentiate this, then,
$\begin{align}
& \dfrac{1}{2\sqrt{x}}+\dfrac{1}{2\sqrt{y}}.\dfrac{dy}{dx}=0 \\
& \dfrac{dy}{dx}.\dfrac{1}{2\sqrt{y}}=-\dfrac{1}{2\sqrt{x}} \\
& \dfrac{dy}{dx}=-\dfrac{1}{2\sqrt{x}}.2\sqrt{y}=-\dfrac{\sqrt{y}}{\sqrt{x}} \\
\end{align}$
2. ${{e}^{x+y}}=\cos \left( x-y \right)$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& {{e}^{x+y}}.\left( 1+\dfrac{dy}{dx} \right)=-\sin \left( x-y \right).\left[ 1-\dfrac{dy}{dx} \right] \\
& {{e}^{x+y}}+{{e}^{x+y}}.\dfrac{dy}{dx}=-\sin \left( x-y \right)+\dfrac{dy}{dx}.\sin \left( x-y \right) \\
& \dfrac{dy}{dx}\left( {{e}^{x+y}}-\sin \left( x-y \right) \right)=-\sin \left( x-y \right)-{{e}^{x+y}} \\
& \dfrac{dy}{dx}=\dfrac{-\left( \sin \left( x-y \right)+{{e}^{x+y}} \right)}{\left( -\sin \left( x-y \right)+{{e}^{x+y}} \right)} \\
\end{align}$
3. ${{x}^{y}}.{{y}^{x}}={{\left( x+y \right)}^{x+y}}$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& {{y}^{x}}.y.{{x}^{y-1}}+{{x}^{y}}.x{{y}^{x-1}}.\dfrac{dy}{dx}=\left[ \left( x+y \right){{\left( x+y \right)}^{\left( x+y-1 \right)}} \right]\times \left( 1+\dfrac{dy}{dx} \right) \\
& \Rightarrow {{y}^{\left( x+1 \right)}}.{{x}^{\left( y-1 \right)}}+{{x}^{\left( y+1 \right)}}.{{y}^{\left( x-1 \right)}}.\dfrac{dy}{dx}={{\left( x+y \right)}^{\left( x+y \right)}}+{{\left( x+y \right)}^{\left( x+y \right)}}.\dfrac{dy}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{\left( x+y \right)}^{\left( x+y \right)}}-{{y}^{\left( x+1 \right)}}.{{x}^{\left( y-1 \right)}}}{{{x}^{\left( y+1 \right)}}.{{y}^{\left( x-1 \right)}}-{{\left( x+y \right)}^{\left( x+y \right)}}} \\
\end{align}$
4. ${{e}^{x}}-y=\log \left( \dfrac{x}{y} \right)$
If we differentiate it for both sides, then we get as follows,
$\begin{align}
& \Rightarrow {{e}^{x}}-\dfrac{dy}{dx}=\left( \dfrac{y}{x} \right)\left( \dfrac{-1}{{{y}^{2}}}.\dfrac{dy}{dx} \right) \\
& \Rightarrow {{e}^{x}}-\dfrac{dy}{dx}=\dfrac{-1}{xy}.\dfrac{dy}{dx} \\
& \Rightarrow \left( -1+\dfrac{1}{xy} \right)\dfrac{dy}{dx}=-\left( {{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}\left( \dfrac{-xy+1}{xy} \right)=-{{e}^{x}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( -{{e}^{x}} \right).xy}{1-xy} \\
\end{align}$
Note: While solving these types of questions you have to be careful about the power of the variable and also for the variable which is going to differentiate and thus we will get the right answers.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

