Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find $ \dfrac{1}{4} $ of (a) $ \dfrac{1}{4} $ (b) $ \dfrac{3}{5} $ (c) $ \dfrac{4}{3} $ .

Answer
VerifiedVerified
567k+ views
Hint: We start solving the problem by recalling the fact that the $ \dfrac{1}{a} $ of the number ‘b’ is defined as $ \dfrac{1}{a}\times b $ . We then multiply $ \dfrac{1}{4} $ to the number $ \dfrac{1}{4} $ to get the $ \dfrac{1}{4} $ th of the number $ \dfrac{1}{4} $ . We then multiply $ \dfrac{1}{4} $ to the number $ \dfrac{3}{5} $ to get the $ \dfrac{1}{4} $ th of the number $ \dfrac{3}{5} $ . We then multiply $ \dfrac{1}{4} $ to the number $ \dfrac{4}{3} $ to get the $ \dfrac{1}{4} $ th of the number $ \dfrac{4}{3} $ .

Complete step by step answer:
According to the problem, we need to find the value of $ \dfrac{1}{4} $ of the numbers $ \dfrac{1}{4} $ , $ \dfrac{3}{5} $ , $ \dfrac{4}{3} $ .
Let us first find the $ \dfrac{1}{4} $ of the number $ \dfrac{1}{4} $ .
We know that the $ \dfrac{1}{a} $ of the number ‘b’ is defined as $ \dfrac{1}{a}\times b $ .
So, we get $ \dfrac{1}{4} $ of the number $ \dfrac{1}{4} $ = $ \dfrac{1}{4}\times \dfrac{1}{4}=\dfrac{1}{16} $ .
Let us first find the $ \dfrac{1}{4} $ of the number $ \dfrac{3}{5} $ .
We know that the $ \dfrac{1}{a} $ of the number ‘b’ is defined as $ \dfrac{1}{a}\times b $ .
So, we get $ \dfrac{1}{4} $ of the number $ \dfrac{3}{5} $ = $ \dfrac{1}{4}\times \dfrac{3}{5}=\dfrac{3}{20} $ .
Let us first find the $ \dfrac{1}{4} $ of the number $ \dfrac{4}{3} $ .
We know that the $ \dfrac{1}{a} $ of the number ‘b’ is defined as $ \dfrac{1}{a}\times b $ .
So, we get $ \dfrac{1}{4} $ of the number $ \dfrac{4}{3} $ = $ \dfrac{1}{4}\times \dfrac{4}{3}=\dfrac{1}{3} $ .

Note:
 We should not divide $ \dfrac{1}{4} $ to the numbers for getting $ \dfrac{1}{4} $ th of them, which is the most common mistake done by students. We can also solve this problem by converting $ \dfrac{1}{4} $ to decimal and then multiplying it with the given numbers. We can also report the answer in decimal places instead of reporting it in fractions. Similarly, we can expect problems to find the $ \dfrac{1}{3} $ of the given numbers.