
Find coefficient of ${x^{12}}$ in${(1 + {x^3})^7}{(1 + {n^4})^{12}}{(1 + {x^2})^4}$.
Answer
576.3k+ views
Hint: To find the coefficient,we make use of the binomial theorem which states \[{(1 + x)^n} = 1 + {\,^n}{C_1} + {\,^n}{C_2}{({x^n})^2} + {\,^n}{C_3}{({x^n})^2}..... + {\,^n}{C_n}{({x^n})^n}\]
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

