
Find coefficient of ${x^{12}}$ in${(1 + {x^3})^7}{(1 + {n^4})^{12}}{(1 + {x^2})^4}$.
Answer
511.5k+ views
Hint: To find the coefficient,we make use of the binomial theorem which states \[{(1 + x)^n} = 1 + {\,^n}{C_1} + {\,^n}{C_2}{({x^n})^2} + {\,^n}{C_3}{({x^n})^2}..... + {\,^n}{C_n}{({x^n})^n}\]
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

What is the full form of POSCO class 10 social science CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE

What is potential and actual resources
