
Find coefficient of ${x^{12}}$ in${(1 + {x^3})^7}{(1 + {n^4})^{12}}{(1 + {x^2})^4}$.
Answer
590.7k+ views
Hint: To find the coefficient,we make use of the binomial theorem which states \[{(1 + x)^n} = 1 + {\,^n}{C_1} + {\,^n}{C_2}{({x^n})^2} + {\,^n}{C_3}{({x^n})^2}..... + {\,^n}{C_n}{({x^n})^n}\]
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Complete step by step solution:
Coefficient of\[{x^{12}}\,in\,{(1 + {x^3}]^7}{(1 + {x^4}]^2}{[1 + {x^2}]^4}\]
Expanding using binomial theorem
${(1 + {x^3})^7} = 1 + {\,^7}{C_1}{x^3} + {\,^7}{C_2}{({x^3})^2} + {\,^7}{C_3} + {\,^7}{C_4}{({x^3})^7}$
$ = 1 + \dfrac{{7!}}{{7 - 1!1!}}{x^3} + \dfrac{{7!}}{{7 - 2!2!}}{x^6} + \dfrac{{7!}}{{7 - 33!}}{x^9} + \dfrac{{7!}}{{7 - 4!4!}}{x^{12}} + ......$
\[ = 1 + \dfrac{{7 \times 6!}}{{6!}}{x^3} + \dfrac{{7 \times 6 \times 5!}}{{5! \times 2 \times 1}}{x^6} + \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!3 \times 2 \times 1}}{x^9} + \dfrac{{7 \times 6 \times 5 \times 4 \times 3!}}{{3!4 \times 3 \times 2 \times 1}}{x^{12}}\]
\[ = 1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}\] ……(1)
Next term${(1 + {x^4}]^2}$,
Expanding using binomial theorem
\[{[1 + {x^4}]^{12}} = 1 + {\,^{12}}{C_1}{x^4} + {\,^{12}}{C_2}{({x^4})^2} + {\,^{12}}{C_3}{({x^4})^3} + ..... + {\,^{12}}{C_{12}}{({x^4})^{12}}\]
$1 + {x^4}{]^{12}} = 1 + \dfrac{{12!}}{{12 - 1!1!}}{x^4} + \dfrac{{12!}}{{12 - 2!2!}}{x^8} + \dfrac{{12!}}{{12 - 3!3!}}{x^{12}} + .....$
\[{[1 + {x^4}]^{12}} = 1 + \dfrac{{12 \times 11!}}{{11!}}{x^4} + \dfrac{{12!}}{{10!2!}}{x^8} + \dfrac{{12!}}{{9!3!}}{x^{12}} + .....\]
${[1 + {x^4}]^{12}} = 1 + 12{x^4} + \dfrac{{12 \times 11 \times 10!}}{{10! \times 2 \times 1}}{x^8} + \dfrac{{12 \times 11 \times 10 \times 9!}}{{3 \times 2 \times 1}}{x^{12}} + ...$
${[1 + {x^4}]^2} = 1 + 12{x^4} + 66{x^8} + 220{x^{12}}$
The last term is ${(1 + {x^2})^4}$
Expanding by binomial theorem, we have
\[{[1 + {x^2}]^4} = 1 + {\,^4}{C_1}{x^2} + {\,^4}{C_2}{({x^2})^2} + {\,^4}{C_3}{({x^2})^3} + {\,^4}{C_4}({x^2})4\]
\[ = 1 + \dfrac{{4!}}{{4 - 1!1!}}{x^2} + \dfrac{{4!}}{{4 - 2!2!}} \times {x^4} + \dfrac{{4!}}{{4 - 3!3!}}{x^6} + \dfrac{{4!}}{{4!0!}}{x^8}\]
\[ = 1 + \dfrac{{4 \times 3!}}{{3!}}{x^2} + \dfrac{{4 \times 3 \times 2!}}{{2!2 \times 1}}{x^4} + \dfrac{{4 \times 3!}}{{1!3!}}{x^6} + 1.{x^8}\]
$ = 1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8}$
Now, we will multiply the terms${(1 + {x^3})^7}{(1 + {x^4})^{12}}$\[{(1 + {x^2})^4}\], we have
${(1 + {x^3})^7}{(1 + {x^4})^{12}}{(1 + {x^2})^4} = (1 + 7{x^3} + 21{x^6} + 35{x^9} + 35{x^{12}}....)$$(1 + 12{x^4} + 66{x^2} + 220{x^{12}})(1 + 4{x^2} + 6{x^4} + 4{x^6} + {x^8})$
Now, we will equate those values, which will give the coefficient of ${x^{12}}$
\[(1 + {x^3}){(1 + {x^4})^{12}}{(1 + {x^2})^4} = {x^{2l + 3b + 4c}} = {x^{12}}\]
$2l,3b,4c = (0,8,4),(6,4,2),(6,0,6),(12,0,0),(0,12,10)$
$ = 1 \times 66{x^8}.6{x^4} + 21{x^6} \times 12{x^4} \times 4{x^2} + 21{x^6} \times 1 \times 4{x^6} + 35{x^{12}} \times 1 \times 1 + 1 \times 220{x^{12}} \times 1$
Equating the coefficient of ${x^{12}}$
$ = 396 + 1008 + 84 + 35 + 220$
$ = 1734$
Note: Make sure to write the coefficient which is associated with the variable which is asked.Do not consider other variables when writing the coefficient asked
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

