
How do you find all the solutions in the interval $[0,2\pi )$ without using a calculator of $3\sin x = 2{\cos ^2}x$ ?
Answer
467.4k+ views
Hint: Firstly we convert the given equation into a quadratic equation which will be in the form $a{y^2} + by + c = 0$ where $y$ will be $\sin x$ . Then we will get the value of $\sin x$ from the quadratic equation and then we will find the value of $x$ where $x$ lies in the interval $[0,2\pi )$ .
Formulas Used:
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1$
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.....$
Complete step-by-step answer:
$\Rightarrow$$3\sin x = 2{\cos ^2}x$
As we know that ;
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
Applying this in the equation we will get;
$\Rightarrow$$3\sin x = 2(1 - {\sin ^2}x)$
$ \Rightarrow 3\sin x = 2 - 2{\sin ^2}x$
Adding both sides $2{\sin ^2}x$ and subtracting $2$ from both side we will get;
$ \Rightarrow 2{\sin ^2}x + 3\sin x - 2 = 0$
$3\sin x$ can be written as $(4 - 1)\sin x$.
$ \Rightarrow 2{\sin ^2}x + (4 - 1)\sin x - 2 = 0$
$ \Rightarrow 2{\sin ^2}x + 4\sin x - \sin x - 2 = 0$
Taking $2\sin x$ common from the first two terms and $ - 1$ from the next two terms we will get;
$ \Rightarrow 2\sin x(\sin x + 2) - (\sin x + 2) = 0$
$ \Rightarrow (2\sin x - 1)(\sin x + 2) = 0$
We will obtain two cases from here;
Case $1$ :
$\Rightarrow$$2\sin x - 1 = 0$
$ \Rightarrow 2\sin x = 1$
$ \Rightarrow \sin x = \dfrac{1}{2}$
Case $2$ :
$\Rightarrow$$\sin x + 2 = 0$
$ \Rightarrow \sin x = - 2$
In case $2$ we can see that $\sin x = - 2$ . But we know that the minimum value of $\sin x$ is $ - 1$ .
So $\sin x = - 2$ is impossible.
From case $1$ ;
When $x$ lies in the interval $\left[ {0,\dfrac{\pi }{2}} \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{\pi }{6}$
Now using the formula;
$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{\pi }{6}$ .
When $x$ lies in the interval $\left[ {\dfrac{\pi }{2},\pi } \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{{5\pi }}{6}$
Now using the formula;
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
Where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{{5\pi }}{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{{5\pi }}{6}$
So the values of $x$ are $\dfrac{\pi }{6}$ and $\dfrac{{5\pi }}{6}$.
Alternative method:
We can also deduce the equation in the form of $\cos x$ by putting $\sin x = \sqrt {1 - {{\cos }^2}x} $.
Note:
When the interval changes the trigonometric functions like $\sin $ , $\cos $ , $\tan $ etc. changes the values of $x$ . $\sin $ function gives positive values of $x$ in the intervals $\left[ {0,\dfrac{\pi }{2}} \right]$ and $\left[ {\dfrac{\pi }{2},\pi } \right]$ which are known as the first quadrant and second quadrant respectively. $\sin $ gives negative values of $x$ in the intervals $\left[ {\pi ,\dfrac{{3\pi }}{2}} \right]$ and $\left[ {\dfrac{{3\pi }}{2},2\pi } \right]$ which are known as third and fourth quadrant respectively.
Formulas Used:
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1$
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.....$
Complete step-by-step answer:
$\Rightarrow$$3\sin x = 2{\cos ^2}x$
As we know that ;
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
Applying this in the equation we will get;
$\Rightarrow$$3\sin x = 2(1 - {\sin ^2}x)$
$ \Rightarrow 3\sin x = 2 - 2{\sin ^2}x$
Adding both sides $2{\sin ^2}x$ and subtracting $2$ from both side we will get;
$ \Rightarrow 2{\sin ^2}x + 3\sin x - 2 = 0$
$3\sin x$ can be written as $(4 - 1)\sin x$.
$ \Rightarrow 2{\sin ^2}x + (4 - 1)\sin x - 2 = 0$
$ \Rightarrow 2{\sin ^2}x + 4\sin x - \sin x - 2 = 0$
Taking $2\sin x$ common from the first two terms and $ - 1$ from the next two terms we will get;
$ \Rightarrow 2\sin x(\sin x + 2) - (\sin x + 2) = 0$
$ \Rightarrow (2\sin x - 1)(\sin x + 2) = 0$
We will obtain two cases from here;
Case $1$ :
$\Rightarrow$$2\sin x - 1 = 0$
$ \Rightarrow 2\sin x = 1$
$ \Rightarrow \sin x = \dfrac{1}{2}$
Case $2$ :
$\Rightarrow$$\sin x + 2 = 0$
$ \Rightarrow \sin x = - 2$
In case $2$ we can see that $\sin x = - 2$ . But we know that the minimum value of $\sin x$ is $ - 1$ .
So $\sin x = - 2$ is impossible.
From case $1$ ;
When $x$ lies in the interval $\left[ {0,\dfrac{\pi }{2}} \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{\pi }{6}$
Now using the formula;
$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{\pi }{6}$ .
When $x$ lies in the interval $\left[ {\dfrac{\pi }{2},\pi } \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{{5\pi }}{6}$
Now using the formula;
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
Where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{{5\pi }}{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{{5\pi }}{6}$
So the values of $x$ are $\dfrac{\pi }{6}$ and $\dfrac{{5\pi }}{6}$.
Alternative method:
We can also deduce the equation in the form of $\cos x$ by putting $\sin x = \sqrt {1 - {{\cos }^2}x} $.
Note:
When the interval changes the trigonometric functions like $\sin $ , $\cos $ , $\tan $ etc. changes the values of $x$ . $\sin $ function gives positive values of $x$ in the intervals $\left[ {0,\dfrac{\pi }{2}} \right]$ and $\left[ {\dfrac{\pi }{2},\pi } \right]$ which are known as the first quadrant and second quadrant respectively. $\sin $ gives negative values of $x$ in the intervals $\left[ {\pi ,\dfrac{{3\pi }}{2}} \right]$ and $\left[ {\dfrac{{3\pi }}{2},2\pi } \right]$ which are known as third and fourth quadrant respectively.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
