
How do you find all the solutions in the interval $[0,2\pi )$ without using a calculator of $3\sin x = 2{\cos ^2}x$ ?
Answer
562.5k+ views
Hint: Firstly we convert the given equation into a quadratic equation which will be in the form $a{y^2} + by + c = 0$ where $y$ will be $\sin x$ . Then we will get the value of $\sin x$ from the quadratic equation and then we will find the value of $x$ where $x$ lies in the interval $[0,2\pi )$ .
Formulas Used:
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1$
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.....$
Complete step-by-step answer:
$\Rightarrow$$3\sin x = 2{\cos ^2}x$
As we know that ;
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
Applying this in the equation we will get;
$\Rightarrow$$3\sin x = 2(1 - {\sin ^2}x)$
$ \Rightarrow 3\sin x = 2 - 2{\sin ^2}x$
Adding both sides $2{\sin ^2}x$ and subtracting $2$ from both side we will get;
$ \Rightarrow 2{\sin ^2}x + 3\sin x - 2 = 0$
$3\sin x$ can be written as $(4 - 1)\sin x$.
$ \Rightarrow 2{\sin ^2}x + (4 - 1)\sin x - 2 = 0$
$ \Rightarrow 2{\sin ^2}x + 4\sin x - \sin x - 2 = 0$
Taking $2\sin x$ common from the first two terms and $ - 1$ from the next two terms we will get;
$ \Rightarrow 2\sin x(\sin x + 2) - (\sin x + 2) = 0$
$ \Rightarrow (2\sin x - 1)(\sin x + 2) = 0$
We will obtain two cases from here;
Case $1$ :
$\Rightarrow$$2\sin x - 1 = 0$
$ \Rightarrow 2\sin x = 1$
$ \Rightarrow \sin x = \dfrac{1}{2}$
Case $2$ :
$\Rightarrow$$\sin x + 2 = 0$
$ \Rightarrow \sin x = - 2$
In case $2$ we can see that $\sin x = - 2$ . But we know that the minimum value of $\sin x$ is $ - 1$ .
So $\sin x = - 2$ is impossible.
From case $1$ ;
When $x$ lies in the interval $\left[ {0,\dfrac{\pi }{2}} \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{\pi }{6}$
Now using the formula;
$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{\pi }{6}$ .
When $x$ lies in the interval $\left[ {\dfrac{\pi }{2},\pi } \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{{5\pi }}{6}$
Now using the formula;
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
Where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{{5\pi }}{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{{5\pi }}{6}$
So the values of $x$ are $\dfrac{\pi }{6}$ and $\dfrac{{5\pi }}{6}$.
Alternative method:
We can also deduce the equation in the form of $\cos x$ by putting $\sin x = \sqrt {1 - {{\cos }^2}x} $.
Note:
When the interval changes the trigonometric functions like $\sin $ , $\cos $ , $\tan $ etc. changes the values of $x$ . $\sin $ function gives positive values of $x$ in the intervals $\left[ {0,\dfrac{\pi }{2}} \right]$ and $\left[ {\dfrac{\pi }{2},\pi } \right]$ which are known as the first quadrant and second quadrant respectively. $\sin $ gives negative values of $x$ in the intervals $\left[ {\pi ,\dfrac{{3\pi }}{2}} \right]$ and $\left[ {\dfrac{{3\pi }}{2},2\pi } \right]$ which are known as third and fourth quadrant respectively.
Formulas Used:
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1$
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.....$
Complete step-by-step answer:
$\Rightarrow$$3\sin x = 2{\cos ^2}x$
As we know that ;
$\Rightarrow$${\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
Applying this in the equation we will get;
$\Rightarrow$$3\sin x = 2(1 - {\sin ^2}x)$
$ \Rightarrow 3\sin x = 2 - 2{\sin ^2}x$
Adding both sides $2{\sin ^2}x$ and subtracting $2$ from both side we will get;
$ \Rightarrow 2{\sin ^2}x + 3\sin x - 2 = 0$
$3\sin x$ can be written as $(4 - 1)\sin x$.
$ \Rightarrow 2{\sin ^2}x + (4 - 1)\sin x - 2 = 0$
$ \Rightarrow 2{\sin ^2}x + 4\sin x - \sin x - 2 = 0$
Taking $2\sin x$ common from the first two terms and $ - 1$ from the next two terms we will get;
$ \Rightarrow 2\sin x(\sin x + 2) - (\sin x + 2) = 0$
$ \Rightarrow (2\sin x - 1)(\sin x + 2) = 0$
We will obtain two cases from here;
Case $1$ :
$\Rightarrow$$2\sin x - 1 = 0$
$ \Rightarrow 2\sin x = 1$
$ \Rightarrow \sin x = \dfrac{1}{2}$
Case $2$ :
$\Rightarrow$$\sin x + 2 = 0$
$ \Rightarrow \sin x = - 2$
In case $2$ we can see that $\sin x = - 2$ . But we know that the minimum value of $\sin x$ is $ - 1$ .
So $\sin x = - 2$ is impossible.
From case $1$ ;
When $x$ lies in the interval $\left[ {0,\dfrac{\pi }{2}} \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{\pi }{6}$
Now using the formula;
$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{\pi }{6}$ .
When $x$ lies in the interval $\left[ {\dfrac{\pi }{2},\pi } \right]$ ;
$ \Rightarrow \sin x = \dfrac{1}{2}$
$ \Rightarrow \sin x = \sin \dfrac{{5\pi }}{6}$
Now using the formula;
$\Rightarrow$$\sin \theta = \sin z$
$ \Rightarrow \theta = 2n\pi + z$
Where $n = 0, \pm 1, \pm 2,.......$
$ \Rightarrow x = 2n\pi + \dfrac{{5\pi }}{6}$
Now $x$ lies in the interval $[0,2\pi )$ so the only possibility is $n = 0$ ;
$\therefore x = \dfrac{{5\pi }}{6}$
So the values of $x$ are $\dfrac{\pi }{6}$ and $\dfrac{{5\pi }}{6}$.
Alternative method:
We can also deduce the equation in the form of $\cos x$ by putting $\sin x = \sqrt {1 - {{\cos }^2}x} $.
Note:
When the interval changes the trigonometric functions like $\sin $ , $\cos $ , $\tan $ etc. changes the values of $x$ . $\sin $ function gives positive values of $x$ in the intervals $\left[ {0,\dfrac{\pi }{2}} \right]$ and $\left[ {\dfrac{\pi }{2},\pi } \right]$ which are known as the first quadrant and second quadrant respectively. $\sin $ gives negative values of $x$ in the intervals $\left[ {\pi ,\dfrac{{3\pi }}{2}} \right]$ and $\left[ {\dfrac{{3\pi }}{2},2\pi } \right]$ which are known as third and fourth quadrant respectively.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

