
Find \[A\left( x \right)\] and \[B\left( x \right)\] in \[\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx = A\left( x \right)\cos 2\alpha + B\left( x \right)\sin 2\alpha + C\].
Answer
563.7k+ views
Hint:
Here we will first consider the LHS of the equation and solve it. We will convert the equation in terms of the sin and cos function. Then we will simplify the equation using the trigonometric properties. Then we will compare the final equation with the given equation to get the value of \[A\left( x \right)\] and \[B\left( x \right)\].
Complete Step by Step Solution:
Given equation is \[\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx\].
Now we will solve this equation to get the required values. Firstly we will write the equation in terms of the sin and cos function. We know the tan function is equal to the ratio of the sin to cos function. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x}}{{\cos x}} - \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}} \,dx\]
Now we will simplify the equation by simply taking the LCM in the numerator and denominator. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}{{\dfrac{{\sin x\cos \alpha + \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}} \,dx\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\sin x\cos \alpha + \sin \alpha \cos x}}} \,dx\]
Now we will use the basic trigonometry properties to simplify the above equation i.e. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\] and \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
We can write the above equation as
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha - \alpha - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {\left( {x + \alpha } \right) - \left( {2\alpha } \right)} \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
Now we will use the basic trigonometry property to expand the numerator of the equation i.e. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha - \cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
Simplifying the above equation, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha }}{{\sin \left( {x + \alpha } \right)}} - \dfrac{{\cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \right)} \,dx\]\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\cos 2\alpha - \cot \left( {x + \alpha } \right)\sin 2\alpha } \right)} \,dx\]
Now integrating the terms, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\cos 2\alpha \,dx} - \int {\cot \left( {x + \alpha } \right)\sin 2\alpha dx} \]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \int {\,dx} - \sin 2\alpha \int {\cot \left( {x + \alpha } \right)dx} \]
We know that the integration \[\int {dx} = x\] and \[\int {\cot x} \,dx = \ln \left| {\sin x} \right|\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \cdot \left( x \right) - \sin 2\alpha \cdot \ln \left| {\sin \left( {x + \alpha } \right)} \right| + C\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = x\cos 2\alpha - \ln \left| {\sin \left( {x + \alpha } \right)} \right| \cdot \sin 2\alpha + C\]
Now we will simply comparing it with the given expression i.e. \[\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx = A\left( x \right)\cos 2\alpha + B\left( x \right)\sin 2\alpha + C\], we will get the value of \[A\left( x \right)\] and \[B\left( x \right)\]. Therefore, we get
\[\begin{array}{l} \Rightarrow A\left( x \right) = x\\ \Rightarrow B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|\end{array}\]
Hence the value of \[A\left( x \right) = x\] and \[B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|\].
Note:
We should note that the ratio of the \[\sin \theta \] and \[\cos \theta \] is equal to the \[\tan \theta \]. Also the ratio of \[\cos \theta \] and \[\sin \theta \] is equal to \[\cot \theta \]. Here, we have converted \[\tan \theta \] into \[\sin \theta \] and \[\cos \theta \] because it is easier to solve sine and cosine functions using the trigonometric identities and properties. Trigonometric identities are used only when the trigonometric functions are present in the equation.
Basic properties of the trigonometric functions and basic trigonometric formulas of the cos function are
\[\begin{array}{l}\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\\\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\end{array}\]
Here we will first consider the LHS of the equation and solve it. We will convert the equation in terms of the sin and cos function. Then we will simplify the equation using the trigonometric properties. Then we will compare the final equation with the given equation to get the value of \[A\left( x \right)\] and \[B\left( x \right)\].
Complete Step by Step Solution:
Given equation is \[\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx\].
Now we will solve this equation to get the required values. Firstly we will write the equation in terms of the sin and cos function. We know the tan function is equal to the ratio of the sin to cos function. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x}}{{\cos x}} - \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}} \,dx\]
Now we will simplify the equation by simply taking the LCM in the numerator and denominator. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}{{\dfrac{{\sin x\cos \alpha + \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}} \,dx\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\sin x\cos \alpha + \sin \alpha \cos x}}} \,dx\]
Now we will use the basic trigonometry properties to simplify the above equation i.e. \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\] and \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
We can write the above equation as
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha - \alpha - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {\left( {x + \alpha } \right) - \left( {2\alpha } \right)} \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
Now we will use the basic trigonometry property to expand the numerator of the equation i.e. \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha - \cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \,dx\]
Simplifying the above equation, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha }}{{\sin \left( {x + \alpha } \right)}} - \dfrac{{\cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \right)} \,dx\]\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\cos 2\alpha - \cot \left( {x + \alpha } \right)\sin 2\alpha } \right)} \,dx\]
Now integrating the terms, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\cos 2\alpha \,dx} - \int {\cot \left( {x + \alpha } \right)\sin 2\alpha dx} \]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \int {\,dx} - \sin 2\alpha \int {\cot \left( {x + \alpha } \right)dx} \]
We know that the integration \[\int {dx} = x\] and \[\int {\cot x} \,dx = \ln \left| {\sin x} \right|\]. Therefore, we get
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \cdot \left( x \right) - \sin 2\alpha \cdot \ln \left| {\sin \left( {x + \alpha } \right)} \right| + C\]
\[ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = x\cos 2\alpha - \ln \left| {\sin \left( {x + \alpha } \right)} \right| \cdot \sin 2\alpha + C\]
Now we will simply comparing it with the given expression i.e. \[\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx = A\left( x \right)\cos 2\alpha + B\left( x \right)\sin 2\alpha + C\], we will get the value of \[A\left( x \right)\] and \[B\left( x \right)\]. Therefore, we get
\[\begin{array}{l} \Rightarrow A\left( x \right) = x\\ \Rightarrow B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|\end{array}\]
Hence the value of \[A\left( x \right) = x\] and \[B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|\].
Note:
We should note that the ratio of the \[\sin \theta \] and \[\cos \theta \] is equal to the \[\tan \theta \]. Also the ratio of \[\cos \theta \] and \[\sin \theta \] is equal to \[\cot \theta \]. Here, we have converted \[\tan \theta \] into \[\sin \theta \] and \[\cos \theta \] because it is easier to solve sine and cosine functions using the trigonometric identities and properties. Trigonometric identities are used only when the trigonometric functions are present in the equation.
Basic properties of the trigonometric functions and basic trigonometric formulas of the cos function are
\[\begin{array}{l}\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\\\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\end{array}\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

