
Find a vector of magnitude $3$ in the direction opposite to the direction of \[\vec v = \dfrac{1}{2}\hat i + \dfrac{1}{2}\hat j + \dfrac{1}{2}\hat k.\]
Answer
511.2k+ views
Hint: Firstly, we will find mod of $\vec v$ then we will use the formula of unit vector to calculate $\hat v$.By using formula of unit vector $ = \dfrac{{vector}}{{magnitude{\text{ of the vector}}}}$.
Complete step by step solution:
\[\overrightarrow V = \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop f\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge \]
Here,$\overrightarrow V = \dfrac{1}{2}i\dfrac{{ - 1}}{2}\mathop j\limits^ \wedge \dfrac{{ - 1}}{2}\mathop K\limits^ \wedge $
We will calculate:\[\left| {\overrightarrow V } \right| = \left| {\dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right|\]
$\left| {\overrightarrow V } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} $
\[
\left| {\overrightarrow V = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} } \right| \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{{1 + 1 + 1}}{4}} \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{3}{4}} \\
\left| {\overrightarrow V } \right| = \dfrac{{\sqrt 3 }}{2} \\
\]
We will substitute the value of$\left| V \right|$in the formula as,
\[\mathop V\limits^ \wedge = \dfrac{{ - \overrightarrow V }}{{\left| {\overrightarrow V } \right|}}\]
$
= \dfrac{{ - \left( { + \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
\dfrac{{ = + \left( { - \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
$
Multiplying numerator and denominator by$2$, we have,
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{2\left( { - \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}R} \right)}}{{2\dfrac{{\sqrt 3 }}{2}}}$
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)}}{{\sqrt 3 }}$
Multiply the unit vector by given magnitude$\left( 3 \right)$,
We have,
\[ \Rightarrow 32 = \dfrac{3}{{\sqrt 3 }}\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)\]
$ \Rightarrow 32 = \sqrt 3 \left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $, where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should put the correct value in the formula for finding $\hat v$. In order to get the opposite direction $\vec v$ we need to get the direction of $\vec v$ first.
Complete step by step solution:
\[\overrightarrow V = \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop f\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge \]
Here,$\overrightarrow V = \dfrac{1}{2}i\dfrac{{ - 1}}{2}\mathop j\limits^ \wedge \dfrac{{ - 1}}{2}\mathop K\limits^ \wedge $
We will calculate:\[\left| {\overrightarrow V } \right| = \left| {\dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right|\]
$\left| {\overrightarrow V } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} $
\[
\left| {\overrightarrow V = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} } \right| \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{{1 + 1 + 1}}{4}} \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{3}{4}} \\
\left| {\overrightarrow V } \right| = \dfrac{{\sqrt 3 }}{2} \\
\]
We will substitute the value of$\left| V \right|$in the formula as,
\[\mathop V\limits^ \wedge = \dfrac{{ - \overrightarrow V }}{{\left| {\overrightarrow V } \right|}}\]
$
= \dfrac{{ - \left( { + \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
\dfrac{{ = + \left( { - \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
$
Multiplying numerator and denominator by$2$, we have,
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{2\left( { - \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}R} \right)}}{{2\dfrac{{\sqrt 3 }}{2}}}$
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)}}{{\sqrt 3 }}$
Multiply the unit vector by given magnitude$\left( 3 \right)$,
We have,
\[ \Rightarrow 32 = \dfrac{3}{{\sqrt 3 }}\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)\]
$ \Rightarrow 32 = \sqrt 3 \left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $, where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should put the correct value in the formula for finding $\hat v$. In order to get the opposite direction $\vec v$ we need to get the direction of $\vec v$ first.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
