
Find a vector of magnitude $3$ in the direction opposite to the direction of \[\vec v = \dfrac{1}{2}\hat i + \dfrac{1}{2}\hat j + \dfrac{1}{2}\hat k.\]
Answer
575.7k+ views
Hint: Firstly, we will find mod of $\vec v$ then we will use the formula of unit vector to calculate $\hat v$.By using formula of unit vector $ = \dfrac{{vector}}{{magnitude{\text{ of the vector}}}}$.
Complete step by step solution:
\[\overrightarrow V = \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop f\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge \]
Here,$\overrightarrow V = \dfrac{1}{2}i\dfrac{{ - 1}}{2}\mathop j\limits^ \wedge \dfrac{{ - 1}}{2}\mathop K\limits^ \wedge $
We will calculate:\[\left| {\overrightarrow V } \right| = \left| {\dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right|\]
$\left| {\overrightarrow V } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} $
\[
\left| {\overrightarrow V = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} } \right| \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{{1 + 1 + 1}}{4}} \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{3}{4}} \\
\left| {\overrightarrow V } \right| = \dfrac{{\sqrt 3 }}{2} \\
\]
We will substitute the value of$\left| V \right|$in the formula as,
\[\mathop V\limits^ \wedge = \dfrac{{ - \overrightarrow V }}{{\left| {\overrightarrow V } \right|}}\]
$
= \dfrac{{ - \left( { + \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
\dfrac{{ = + \left( { - \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
$
Multiplying numerator and denominator by$2$, we have,
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{2\left( { - \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}R} \right)}}{{2\dfrac{{\sqrt 3 }}{2}}}$
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)}}{{\sqrt 3 }}$
Multiply the unit vector by given magnitude$\left( 3 \right)$,
We have,
\[ \Rightarrow 32 = \dfrac{3}{{\sqrt 3 }}\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)\]
$ \Rightarrow 32 = \sqrt 3 \left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $, where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should put the correct value in the formula for finding $\hat v$. In order to get the opposite direction $\vec v$ we need to get the direction of $\vec v$ first.
Complete step by step solution:
\[\overrightarrow V = \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop f\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge \]
Here,$\overrightarrow V = \dfrac{1}{2}i\dfrac{{ - 1}}{2}\mathop j\limits^ \wedge \dfrac{{ - 1}}{2}\mathop K\limits^ \wedge $
We will calculate:\[\left| {\overrightarrow V } \right| = \left| {\dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right|\]
$\left| {\overrightarrow V } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}} $
\[
\left| {\overrightarrow V = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} } \right| \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{{1 + 1 + 1}}{4}} \\
\left| {\overrightarrow V } \right| = \sqrt {\dfrac{3}{4}} \\
\left| {\overrightarrow V } \right| = \dfrac{{\sqrt 3 }}{2} \\
\]
We will substitute the value of$\left| V \right|$in the formula as,
\[\mathop V\limits^ \wedge = \dfrac{{ - \overrightarrow V }}{{\left| {\overrightarrow V } \right|}}\]
$
= \dfrac{{ - \left( { + \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
\dfrac{{ = + \left( { - \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\
$
Multiplying numerator and denominator by$2$, we have,
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{2\left( { - \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}R} \right)}}{{2\dfrac{{\sqrt 3 }}{2}}}$
$ \Rightarrow \mathop V\limits^ \wedge = \dfrac{{\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)}}{{\sqrt 3 }}$
Multiply the unit vector by given magnitude$\left( 3 \right)$,
We have,
\[ \Rightarrow 32 = \dfrac{3}{{\sqrt 3 }}\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)\]
$ \Rightarrow 32 = \sqrt 3 \left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $, where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should put the correct value in the formula for finding $\hat v$. In order to get the opposite direction $\vec v$ we need to get the direction of $\vec v$ first.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

