
Find a relationship between x and y so that the triangle whose vertices are given by (x, y), (1,1) and (5, 1) is a right triangle with the hypotenuse defined by the points (1, 1) and (5, 1).
A. ${\left( {x + 3} \right)^2} - {\left( {y - 1} \right)^2} = {2^2}$
B. ${\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = {2^2}$
C. ${x^2} + {y^2} = {2^2}$
D. ${\left( {x - 3} \right)^2} - {\left( {y - 2} \right)^2} = {3^2}$
Answer
586.8k+ views
Hint: We will solve this problem by using the distance formula;
Formula: $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ .
Complete step by step solution:
Let us use the distance formula to find the length of the hypotenuse h with points (1, 1) and (5, 1).
$h = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ … (i)
Substitute the value of ${x_1},\,{y_1},{x_2}$ and ${y_2}$in equation (i).
$h = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {1 - 1} \right)}^2}} $
$h = \sqrt {{{\left( 4 \right)}^2} + {{\left( 0 \right)}^2}} $
$h = \sqrt {16 + 0} \Rightarrow \sqrt {16} $
$h = 4$
Hypotenuse is$4$.
Now we use the distance formula to find the sizes of the two other sides a and b of the triangle.
$a = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} $
$b = \sqrt {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} $
By Pythagoras theorem gives
${4^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} } \right)^2} + {\left( {\sqrt {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} } \right)^2}$
Expand the squares, simplify and complete the square to rewrite above relationship between${\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = {2^2}$.
${4^2} = \left( {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} \right) + \left( {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} \right)$
$ = \left( {{x^2} + 1 - 2x + {y^2} + 1 - 2y} \right) + \left( {{x^2} + 25 - 10x + {y^2} + 1 - 2y} \right)$
$ = {x^2} + 1 - 2x + {y^2} + 1 - 2y + {x^2} + 25 - 10x + {y^2} + 1 - 2y$
$ = 2{x^2} + 2{y^2} - 12x - 4y + 28$
${4^2} = 2\left( {{x^2} + {y^2} - 6x - 2y + 14} \right)$
$\dfrac{{16}}{2} = ({x^2} - 6x + 9) + ({y^2} - 2y + 1) + 4$
$8 - 4 = {(x - 3)^2} + {(y - 1)^2}$
${a^2} - 2ab + {b^2} = {(a - b)^2}$
${(1.1)^{10000}}$
Then, we will break the value ${(1.1)^{10000}}$into two parts such that
$
{(1 + 0.1)^{10000}} \\
{(1 + 0.1)^{10000}} = {(1 + 0.1)^{10000}} \\
$
We know that binomial theorem,
\[{(x + a)^x} = {\,^n}{C_0}{a^x} + {\,^n}{C_1}{a^{x - 1}}{x^1} + {\,^n}{C_2}{a^{x - 2}}{x^2} + ...... + {\,^n}{C_x}{x^2}\]
So, $x = 1,\,\,a = 0.1\,\,or\,\,\,n = 10000$
Then will put these values in the above binomial theorem.
Then
\[{(1 + 0.1)^{10000}} = {\,^{10000}}{C_0}{(1)^{10000}} + {\,^{10000}}{C_1}{(1)^{10000}} \times (0.1) + ......{(1 + 0.1)^{10000}} = \dfrac{{10000!}}{{0!10000 - 0!}} \times {(1)^{10000}} + \dfrac{{10000 \times 9999!}}{{1! \times 9999!}}{(1)^{9999}} \times (0.1)\]
${(1 + 0.1)^{10000}} = \dfrac{{100001}}{{100001}} + 10000 \times 0.1$
$
{(1 + 0.1)^{0000}} = 1 + 1000.0 \\
{(1 + 0.1)^{10000}} = 1001 \\
$
So, ${(1 + 0.1)^{10000}} > 1000$
Note: Students must keep in mind that Pythagoras theorem will apply only for the right angle triangle and it will give $h{(hyp.)^2} = {(base)^2} + {(perp.)^2}$.
Formula: $\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ .
Complete step by step solution:
Let us use the distance formula to find the length of the hypotenuse h with points (1, 1) and (5, 1).
$h = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ … (i)
Substitute the value of ${x_1},\,{y_1},{x_2}$ and ${y_2}$in equation (i).
$h = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {1 - 1} \right)}^2}} $
$h = \sqrt {{{\left( 4 \right)}^2} + {{\left( 0 \right)}^2}} $
$h = \sqrt {16 + 0} \Rightarrow \sqrt {16} $
$h = 4$
Hypotenuse is$4$.
Now we use the distance formula to find the sizes of the two other sides a and b of the triangle.
$a = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} $
$b = \sqrt {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} $
By Pythagoras theorem gives
${4^2} = {\left( {\sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} } \right)^2} + {\left( {\sqrt {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} } \right)^2}$
Expand the squares, simplify and complete the square to rewrite above relationship between${\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = {2^2}$.
${4^2} = \left( {{{\left( {x - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} \right) + \left( {{{\left( {x - 5} \right)}^2} + {{\left( {y - 1} \right)}^2}} \right)$
$ = \left( {{x^2} + 1 - 2x + {y^2} + 1 - 2y} \right) + \left( {{x^2} + 25 - 10x + {y^2} + 1 - 2y} \right)$
$ = {x^2} + 1 - 2x + {y^2} + 1 - 2y + {x^2} + 25 - 10x + {y^2} + 1 - 2y$
$ = 2{x^2} + 2{y^2} - 12x - 4y + 28$
${4^2} = 2\left( {{x^2} + {y^2} - 6x - 2y + 14} \right)$
$\dfrac{{16}}{2} = ({x^2} - 6x + 9) + ({y^2} - 2y + 1) + 4$
$8 - 4 = {(x - 3)^2} + {(y - 1)^2}$
${a^2} - 2ab + {b^2} = {(a - b)^2}$
${(1.1)^{10000}}$
Then, we will break the value ${(1.1)^{10000}}$into two parts such that
$
{(1 + 0.1)^{10000}} \\
{(1 + 0.1)^{10000}} = {(1 + 0.1)^{10000}} \\
$
We know that binomial theorem,
\[{(x + a)^x} = {\,^n}{C_0}{a^x} + {\,^n}{C_1}{a^{x - 1}}{x^1} + {\,^n}{C_2}{a^{x - 2}}{x^2} + ...... + {\,^n}{C_x}{x^2}\]
So, $x = 1,\,\,a = 0.1\,\,or\,\,\,n = 10000$
Then will put these values in the above binomial theorem.
Then
\[{(1 + 0.1)^{10000}} = {\,^{10000}}{C_0}{(1)^{10000}} + {\,^{10000}}{C_1}{(1)^{10000}} \times (0.1) + ......{(1 + 0.1)^{10000}} = \dfrac{{10000!}}{{0!10000 - 0!}} \times {(1)^{10000}} + \dfrac{{10000 \times 9999!}}{{1! \times 9999!}}{(1)^{9999}} \times (0.1)\]
${(1 + 0.1)^{10000}} = \dfrac{{100001}}{{100001}} + 10000 \times 0.1$
$
{(1 + 0.1)^{0000}} = 1 + 1000.0 \\
{(1 + 0.1)^{10000}} = 1001 \\
$
So, ${(1 + 0.1)^{10000}} > 1000$
Note: Students must keep in mind that Pythagoras theorem will apply only for the right angle triangle and it will give $h{(hyp.)^2} = {(base)^2} + {(perp.)^2}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

