
How do you find a power series converging to \[f(x) = \dfrac{{\sin x}}{x}\] and determine the radius of convergence?
Answer
546.3k+ views
Hint: First we need to find the power series of \[\dfrac{{\sin x}}{x}\] . A power series about ‘a’, or just power series, is any series that can be written in the form \[\sum\limits_{n = 0}^\infty {{c_n}{{(x - a)}^n}} \] . Where ‘a’ and \[{c_n}\] are numbers. The \[{c_n}\] are often called the coefficients of the series. We can find the radius of convergence using the ratio test.
Complete step-by-step answer:
Given, \[f(x) = \dfrac{{\sin x}}{x}\] .
Now let’s use the maclaurin expansion.
We know the formula of the maclaurin series: first we find the maclaurin series of \[f(x) = \sin x\] .
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(0)}}{{n!}}{{(x - 0)}^k} = f(0) + \dfrac{{f'(0)}}{{1!}}x + } \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \dfrac{{{f^{(5)}}(0)}}{{5!}}{x^5} + .....\]
We need \[f(0) = \sin (0) = 0\]
Differentiating \[\sin x\] with respect to ‘x’. \[f'(x) = \cos x\]
\[f'(0) = \cos (0) = 1\]
Again differentiate with respect to ‘x’. \[f''(x) = - \sin x\]
\[f''(0) = - \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[f'''(x) = - \cos x\]
\[f'''(0) = - \cos (0) = - 1\]
Again differentiate with respect to ‘x’. \[{f^{(4)}}(0) = \sin x\]
\[{f^{(4)}}(0) = \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[{f^{(5)}}(0) = \cos x\]
\[{f^{(5)}}(0) = \cos (0) = 1\]
Substituting we have,
\[ \Rightarrow \sin x = 0 + \dfrac{{(1)}}{{1!}}x + \dfrac{{(0)}}{{2!}}{x^2} + \dfrac{{( - 1)}}{{3!}}{x^3} + \dfrac{{(0)}}{{4!}}{x^4} + \dfrac{{(1)}}{{5!}}{x^5} + ......\]
\[ \Rightarrow \sin x = 0 + x + 0 - \dfrac{{{x^3}}}{{3!}} + 0 + \dfrac{{{x^5}}}{{5!}} - ......\]
\[ \Rightarrow \sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - .....\]
Expressing this in the sigma notation we have,
\[ \Rightarrow \sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} \]
But we need \[\dfrac{{\sin x}}{x}\] . So divide the above equation by x
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} .\dfrac{1}{x}\]
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \] . This is the required power series.
Now for checking the radius of convergence, we have ratio test sate that if we have a series \[\sum {{a_n}} \] then \[\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L\] . If L is less than 1 then the series is convergent.
Here \[{a_n} = {( - 1)^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}\]
Lets find \[\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1}}\dfrac{{{x^{2(n + 1)}}}}{{(2(n + 1) + 1)!}}} \right)}}{{\left( {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We have \[\dfrac{{{{( - 1)}^{n + 1}}}}{{{{( - 1)}^n}}} = {( - 1)^{n + 1 - n}}\] above becomes
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1 - n}}\dfrac{{{x^{2(n + 1)}}}}{{(2n + 2 + 1)!}}} \right)}}{{\left( {\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We can rewrite it has,
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^{2n + 2}}}}{{(2n + 3)!}} \times \dfrac{{(2n + 1)!}}{{{x^{2n}}}}\]
Since we have, \[\dfrac{{{x^{2n + 2}}}}{{{x^{2n}}}} = {x^{2n + 2 - 2n}} = {x^2}\]
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}\]
Now substituting in the limit we have
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| { - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}} \right|\]
Since the limit is for ‘n’ we can treat x as constant and removing outside the limit,
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{(2n + 1)!}}{{(2n + 3)!}}} \right|\]
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{{(2n + 1)!}}{{(2n + 3)!}}\]
This can be written as
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{(2n + 3)(2n + 2)}}\]
\[ = 0\]
The radius of convergence is 0.
So, the correct answer is “0”.
Note: Since it has a long calculation part be careful in each step. In the above problem we have, \[\dfrac{{(2n + 1)!}}{{(2n + 3)!}}\] .
We know that \[n! = n(n - 1)(n - 2).....\] . Hence we can write \[(2n + 3)! = (2n + 3)(2n + 2)(2n + 1)!\] . Hence the numerator terms cancel out we will have \[\dfrac{1}{{(2n + 3)(2n + 2)}}\] .
Complete step-by-step answer:
Given, \[f(x) = \dfrac{{\sin x}}{x}\] .
Now let’s use the maclaurin expansion.
We know the formula of the maclaurin series: first we find the maclaurin series of \[f(x) = \sin x\] .
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(0)}}{{n!}}{{(x - 0)}^k} = f(0) + \dfrac{{f'(0)}}{{1!}}x + } \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \dfrac{{{f^{(5)}}(0)}}{{5!}}{x^5} + .....\]
We need \[f(0) = \sin (0) = 0\]
Differentiating \[\sin x\] with respect to ‘x’. \[f'(x) = \cos x\]
\[f'(0) = \cos (0) = 1\]
Again differentiate with respect to ‘x’. \[f''(x) = - \sin x\]
\[f''(0) = - \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[f'''(x) = - \cos x\]
\[f'''(0) = - \cos (0) = - 1\]
Again differentiate with respect to ‘x’. \[{f^{(4)}}(0) = \sin x\]
\[{f^{(4)}}(0) = \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[{f^{(5)}}(0) = \cos x\]
\[{f^{(5)}}(0) = \cos (0) = 1\]
Substituting we have,
\[ \Rightarrow \sin x = 0 + \dfrac{{(1)}}{{1!}}x + \dfrac{{(0)}}{{2!}}{x^2} + \dfrac{{( - 1)}}{{3!}}{x^3} + \dfrac{{(0)}}{{4!}}{x^4} + \dfrac{{(1)}}{{5!}}{x^5} + ......\]
\[ \Rightarrow \sin x = 0 + x + 0 - \dfrac{{{x^3}}}{{3!}} + 0 + \dfrac{{{x^5}}}{{5!}} - ......\]
\[ \Rightarrow \sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - .....\]
Expressing this in the sigma notation we have,
\[ \Rightarrow \sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} \]
But we need \[\dfrac{{\sin x}}{x}\] . So divide the above equation by x
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} .\dfrac{1}{x}\]
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \] . This is the required power series.
Now for checking the radius of convergence, we have ratio test sate that if we have a series \[\sum {{a_n}} \] then \[\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L\] . If L is less than 1 then the series is convergent.
Here \[{a_n} = {( - 1)^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}\]
Lets find \[\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1}}\dfrac{{{x^{2(n + 1)}}}}{{(2(n + 1) + 1)!}}} \right)}}{{\left( {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We have \[\dfrac{{{{( - 1)}^{n + 1}}}}{{{{( - 1)}^n}}} = {( - 1)^{n + 1 - n}}\] above becomes
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1 - n}}\dfrac{{{x^{2(n + 1)}}}}{{(2n + 2 + 1)!}}} \right)}}{{\left( {\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We can rewrite it has,
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^{2n + 2}}}}{{(2n + 3)!}} \times \dfrac{{(2n + 1)!}}{{{x^{2n}}}}\]
Since we have, \[\dfrac{{{x^{2n + 2}}}}{{{x^{2n}}}} = {x^{2n + 2 - 2n}} = {x^2}\]
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}\]
Now substituting in the limit we have
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| { - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}} \right|\]
Since the limit is for ‘n’ we can treat x as constant and removing outside the limit,
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{(2n + 1)!}}{{(2n + 3)!}}} \right|\]
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{{(2n + 1)!}}{{(2n + 3)!}}\]
This can be written as
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{(2n + 3)(2n + 2)}}\]
\[ = 0\]
The radius of convergence is 0.
So, the correct answer is “0”.
Note: Since it has a long calculation part be careful in each step. In the above problem we have, \[\dfrac{{(2n + 1)!}}{{(2n + 3)!}}\] .
We know that \[n! = n(n - 1)(n - 2).....\] . Hence we can write \[(2n + 3)! = (2n + 3)(2n + 2)(2n + 1)!\] . Hence the numerator terms cancel out we will have \[\dfrac{1}{{(2n + 3)(2n + 2)}}\] .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

