
How do you find a power series converging to \[f(x) = \dfrac{{\sin x}}{x}\] and determine the radius of convergence?
Answer
560.4k+ views
Hint: First we need to find the power series of \[\dfrac{{\sin x}}{x}\] . A power series about ‘a’, or just power series, is any series that can be written in the form \[\sum\limits_{n = 0}^\infty {{c_n}{{(x - a)}^n}} \] . Where ‘a’ and \[{c_n}\] are numbers. The \[{c_n}\] are often called the coefficients of the series. We can find the radius of convergence using the ratio test.
Complete step-by-step answer:
Given, \[f(x) = \dfrac{{\sin x}}{x}\] .
Now let’s use the maclaurin expansion.
We know the formula of the maclaurin series: first we find the maclaurin series of \[f(x) = \sin x\] .
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(0)}}{{n!}}{{(x - 0)}^k} = f(0) + \dfrac{{f'(0)}}{{1!}}x + } \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \dfrac{{{f^{(5)}}(0)}}{{5!}}{x^5} + .....\]
We need \[f(0) = \sin (0) = 0\]
Differentiating \[\sin x\] with respect to ‘x’. \[f'(x) = \cos x\]
\[f'(0) = \cos (0) = 1\]
Again differentiate with respect to ‘x’. \[f''(x) = - \sin x\]
\[f''(0) = - \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[f'''(x) = - \cos x\]
\[f'''(0) = - \cos (0) = - 1\]
Again differentiate with respect to ‘x’. \[{f^{(4)}}(0) = \sin x\]
\[{f^{(4)}}(0) = \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[{f^{(5)}}(0) = \cos x\]
\[{f^{(5)}}(0) = \cos (0) = 1\]
Substituting we have,
\[ \Rightarrow \sin x = 0 + \dfrac{{(1)}}{{1!}}x + \dfrac{{(0)}}{{2!}}{x^2} + \dfrac{{( - 1)}}{{3!}}{x^3} + \dfrac{{(0)}}{{4!}}{x^4} + \dfrac{{(1)}}{{5!}}{x^5} + ......\]
\[ \Rightarrow \sin x = 0 + x + 0 - \dfrac{{{x^3}}}{{3!}} + 0 + \dfrac{{{x^5}}}{{5!}} - ......\]
\[ \Rightarrow \sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - .....\]
Expressing this in the sigma notation we have,
\[ \Rightarrow \sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} \]
But we need \[\dfrac{{\sin x}}{x}\] . So divide the above equation by x
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} .\dfrac{1}{x}\]
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \] . This is the required power series.
Now for checking the radius of convergence, we have ratio test sate that if we have a series \[\sum {{a_n}} \] then \[\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L\] . If L is less than 1 then the series is convergent.
Here \[{a_n} = {( - 1)^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}\]
Lets find \[\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1}}\dfrac{{{x^{2(n + 1)}}}}{{(2(n + 1) + 1)!}}} \right)}}{{\left( {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We have \[\dfrac{{{{( - 1)}^{n + 1}}}}{{{{( - 1)}^n}}} = {( - 1)^{n + 1 - n}}\] above becomes
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1 - n}}\dfrac{{{x^{2(n + 1)}}}}{{(2n + 2 + 1)!}}} \right)}}{{\left( {\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We can rewrite it has,
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^{2n + 2}}}}{{(2n + 3)!}} \times \dfrac{{(2n + 1)!}}{{{x^{2n}}}}\]
Since we have, \[\dfrac{{{x^{2n + 2}}}}{{{x^{2n}}}} = {x^{2n + 2 - 2n}} = {x^2}\]
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}\]
Now substituting in the limit we have
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| { - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}} \right|\]
Since the limit is for ‘n’ we can treat x as constant and removing outside the limit,
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{(2n + 1)!}}{{(2n + 3)!}}} \right|\]
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{{(2n + 1)!}}{{(2n + 3)!}}\]
This can be written as
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{(2n + 3)(2n + 2)}}\]
\[ = 0\]
The radius of convergence is 0.
So, the correct answer is “0”.
Note: Since it has a long calculation part be careful in each step. In the above problem we have, \[\dfrac{{(2n + 1)!}}{{(2n + 3)!}}\] .
We know that \[n! = n(n - 1)(n - 2).....\] . Hence we can write \[(2n + 3)! = (2n + 3)(2n + 2)(2n + 1)!\] . Hence the numerator terms cancel out we will have \[\dfrac{1}{{(2n + 3)(2n + 2)}}\] .
Complete step-by-step answer:
Given, \[f(x) = \dfrac{{\sin x}}{x}\] .
Now let’s use the maclaurin expansion.
We know the formula of the maclaurin series: first we find the maclaurin series of \[f(x) = \sin x\] .
\[\sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(0)}}{{n!}}{{(x - 0)}^k} = f(0) + \dfrac{{f'(0)}}{{1!}}x + } \dfrac{{f''(0)}}{{2!}}{x^2} + \dfrac{{f'''(0)}}{{3!}}{x^3} + \dfrac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \dfrac{{{f^{(5)}}(0)}}{{5!}}{x^5} + .....\]
We need \[f(0) = \sin (0) = 0\]
Differentiating \[\sin x\] with respect to ‘x’. \[f'(x) = \cos x\]
\[f'(0) = \cos (0) = 1\]
Again differentiate with respect to ‘x’. \[f''(x) = - \sin x\]
\[f''(0) = - \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[f'''(x) = - \cos x\]
\[f'''(0) = - \cos (0) = - 1\]
Again differentiate with respect to ‘x’. \[{f^{(4)}}(0) = \sin x\]
\[{f^{(4)}}(0) = \sin (0) = 0\]
Again differentiate with respect to ‘x’. \[{f^{(5)}}(0) = \cos x\]
\[{f^{(5)}}(0) = \cos (0) = 1\]
Substituting we have,
\[ \Rightarrow \sin x = 0 + \dfrac{{(1)}}{{1!}}x + \dfrac{{(0)}}{{2!}}{x^2} + \dfrac{{( - 1)}}{{3!}}{x^3} + \dfrac{{(0)}}{{4!}}{x^4} + \dfrac{{(1)}}{{5!}}{x^5} + ......\]
\[ \Rightarrow \sin x = 0 + x + 0 - \dfrac{{{x^3}}}{{3!}} + 0 + \dfrac{{{x^5}}}{{5!}} - ......\]
\[ \Rightarrow \sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - .....\]
Expressing this in the sigma notation we have,
\[ \Rightarrow \sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} \]
But we need \[\dfrac{{\sin x}}{x}\] . So divide the above equation by x
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n + 1}}}}{{(2n + 1)!}}} .\dfrac{1}{x}\]
\[ \Rightarrow \dfrac{{\sin x}}{x} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \] . This is the required power series.
Now for checking the radius of convergence, we have ratio test sate that if we have a series \[\sum {{a_n}} \] then \[\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L\] . If L is less than 1 then the series is convergent.
Here \[{a_n} = {( - 1)^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}\]
Lets find \[\dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1}}\dfrac{{{x^{2(n + 1)}}}}{{(2(n + 1) + 1)!}}} \right)}}{{\left( {{{( - 1)}^n}\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We have \[\dfrac{{{{( - 1)}^{n + 1}}}}{{{{( - 1)}^n}}} = {( - 1)^{n + 1 - n}}\] above becomes
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = \dfrac{{\left( {{{( - 1)}^{n + 1 - n}}\dfrac{{{x^{2(n + 1)}}}}{{(2n + 2 + 1)!}}} \right)}}{{\left( {\dfrac{{{x^{2n}}}}{{(2n + 1)!}}} \right)}}\]
We can rewrite it has,
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^{2n + 2}}}}{{(2n + 3)!}} \times \dfrac{{(2n + 1)!}}{{{x^{2n}}}}\]
Since we have, \[\dfrac{{{x^{2n + 2}}}}{{{x^{2n}}}} = {x^{2n + 2 - 2n}} = {x^2}\]
\[ \Rightarrow \dfrac{{{a_{n + 1}}}}{{{a_n}}} = - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}\]
Now substituting in the limit we have
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| { - \dfrac{{{x^2}(2n + 1)!}}{{(2n + 3)!}}} \right|\]
Since the limit is for ‘n’ we can treat x as constant and removing outside the limit,
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{(2n + 1)!}}{{(2n + 3)!}}} \right|\]
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{{(2n + 1)!}}{{(2n + 3)!}}\]
This can be written as
\[ = {x^2}\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{(2n + 3)(2n + 2)}}\]
\[ = 0\]
The radius of convergence is 0.
So, the correct answer is “0”.
Note: Since it has a long calculation part be careful in each step. In the above problem we have, \[\dfrac{{(2n + 1)!}}{{(2n + 3)!}}\] .
We know that \[n! = n(n - 1)(n - 2).....\] . Hence we can write \[(2n + 3)! = (2n + 3)(2n + 2)(2n + 1)!\] . Hence the numerator terms cancel out we will have \[\dfrac{1}{{(2n + 3)(2n + 2)}}\] .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

