
Factorize the given expression \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}\]
Answer
607.5k+ views
Hint: In the given expression, first take the expression given inside the bracket and apply the basic formula. Now simplify the expression again by using the identity \[\left( {{a}^{2}}-{{b}^{2}} \right)\].
Complete step-by-step answer:
Let us take the given expression,
\[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}.........(1)\]
We know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
Similarly, \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)={{\left( x-y \right)}^{2}}\].
Thus the expression \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}\] becomes \[{{\left( x-y \right)}^{2}}-{{z}^{2}}\].
Now look at the expression, \[{{\left( x-y \right)}^{2}}-{{z}^{2}}......(2)\]
This is of the form \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
Thus let us convert the equation (2).
\[{{\left( x-y \right)}^{2}}-{{z}^{2}}=\left[ \left( x-y \right)+z \right]\left[ \left( x-y \right)-z \right]\]
Open the brackets and simplify.
\[\left[ x-y+z \right]\left[ x-y-z \right]\]
Thus we have factorized, \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}=\left[ x-y+z \right]\left[ x-y-z \right]\].
This cannot be factored further.
\[\therefore \left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}=\left( x-y+z \right)\left( x-y-z \right)\].
Note: You can also solve it by taking common factors.
\[\begin{align}
& \left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}} \\
& \left[ x\left( x-y \right)-y\left( x-y \right) \right]-{{z}^{2}} \\
& \Rightarrow \left[ \left( x-y \right)\left( x-y \right) \right]-{{z}^{2}} \\
& ={{\left( x-y \right)}^{2}}-{{z}^{2}} \\
\end{align}\]
Then apply \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[={{\left( x-y \right)}^{2}}-{{z}^{2}}=\left( x-y-z \right)\left( x+y-z \right)\].
Complete step-by-step answer:
Let us take the given expression,
\[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}.........(1)\]
We know that \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\].
Similarly, \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)={{\left( x-y \right)}^{2}}\].
Thus the expression \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}\] becomes \[{{\left( x-y \right)}^{2}}-{{z}^{2}}\].
Now look at the expression, \[{{\left( x-y \right)}^{2}}-{{z}^{2}}......(2)\]
This is of the form \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
Thus let us convert the equation (2).
\[{{\left( x-y \right)}^{2}}-{{z}^{2}}=\left[ \left( x-y \right)+z \right]\left[ \left( x-y \right)-z \right]\]
Open the brackets and simplify.
\[\left[ x-y+z \right]\left[ x-y-z \right]\]
Thus we have factorized, \[\left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}=\left[ x-y+z \right]\left[ x-y-z \right]\].
This cannot be factored further.
\[\therefore \left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}}=\left( x-y+z \right)\left( x-y-z \right)\].
Note: You can also solve it by taking common factors.
\[\begin{align}
& \left( {{x}^{2}}-2xy+{{y}^{2}} \right)-{{z}^{2}} \\
& \left[ x\left( x-y \right)-y\left( x-y \right) \right]-{{z}^{2}} \\
& \Rightarrow \left[ \left( x-y \right)\left( x-y \right) \right]-{{z}^{2}} \\
& ={{\left( x-y \right)}^{2}}-{{z}^{2}} \\
\end{align}\]
Then apply \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\].
\[={{\left( x-y \right)}^{2}}-{{z}^{2}}=\left( x-y-z \right)\left( x+y-z \right)\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

