
Factorize the following:
1) ${{x}^{2}}+2x-63$
2) $6{{x}^{2}}-17x+12$
3) $25{{y}^{2}}+110y+121$
4) ${{x}^{2}}+16{{y}^{2}}+64{{z}^{2}}-8xy-64yz+16zx$
5) $25{{x}^{2}}+36{{y}^{2}}+49{{z}^{2}}+60xy-84yz-70zx$
6) $8+64{{x}^{3}}$
7) $8{{x}^{3}}+27{{y}^{3}}+36{{x}^{2}}y+54x{{y}^{2}}$
8) $343{{a}^{3}}-{{b}^{3}}-147{{a}^{2}}b+21a{{b}^{2}}$
9) $3\sqrt{3}{{a}^{3}}+27{{b}^{3}}-{{c}^{3}}+9\sqrt{3}abc$
Answer
570.6k+ views
Hint:
Factorization means breaking or splitting up a number into smaller numbers, which when multiplied together form the same original number. In addition to this, the smaller numbers are known as the factors.
Complete step by step solution:
Now, factoring the given numbers:
1) ${{x}^{2}}+2x-63$
$\begin{align}
& \Rightarrow {{x}^{2}}+9x-7x-63 \\
& \Rightarrow x\left( x+9 \right)-7\left( x+9 \right) \\
& \therefore \left( x-7 \right)\left( x+9 \right) \\
\end{align}$
2) $6{{x}^{2}}-17x+12$
\[\begin{align}
& \Rightarrow 6{{x}^{2}}-8x-9x+12 \\
& \Rightarrow 2x\left( 3x-4 \right)-3\left( 3x-4 \right) \\
& \therefore \left( 2x-3 \right)\left( 3x-4 \right) \\
\end{align}\]
3) $25{{y}^{2}}+110y+121$
$\begin{align}
& \Rightarrow 25{{y}^{2}}+110y+121 \\
& \Rightarrow 25{{y}^{2}}+55y+55y+121 \\
& \Rightarrow 5y\left( 5y+11 \right)+11\left( 5y+11 \right) \\
& \Rightarrow \left( 5y+11 \right)\left( 5y+11 \right) \\
& \therefore {{\left( 5y+11 \right)}^{2}} \\
\end{align}$
4) ${{x}^{2}}+16{{y}^{2}}+64{{z}^{2}}-8xy-64yz+16zx$
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}+{{\left( -4y \right)}^{2}}+{{\left( 8z \right)}^{2}}+2\left( x \right)\left( -4y \right)+2\left( -4y \right)\left( 8z \right)+2\left( 8z \right)\left( x \right) \\
& \text{we know that, }{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
& \Rightarrow {{\left( x-4y+8z \right)}^{2}} \\
\end{align}\]
5) $25{{x}^{2}}+36{{y}^{2}}+49{{z}^{2}}+60xy-84yz-70zx$
$\begin{align}
& \Rightarrow {{\left( 5x \right)}^{2}}+{{\left( 6y \right)}^{2}}+{{\left( -7z \right)}^{2}}+2\left( 5x \right)\left( 6y \right)+2\left( 6y \right)\left( -7z \right)+2\left( -7z \right)\left( 5x \right) \\
& \text{We know that, }{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
& \Rightarrow {{\left( 5x+6y-7x \right)}^{2}} \\
\end{align}$
6) $8+64{{x}^{3}}$
$\begin{align}
& \Rightarrow {{\left( 2 \right)}^{3}}+{{\left( 4x \right)}^{3}} \\
& \text{We know that, }{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow \left( 2+4x \right)\left( {{\left( 2 \right)}^{2}}-\left( 2 \right)\left( 4x \right)+{{\left( 4x \right)}^{2}} \right) \\
& \Rightarrow \left( 2+4x \right)\left( 4-8x+16{{x}^{2}} \right) \\
\end{align}$
7) $8{{x}^{3}}+27{{y}^{3}}+36{{x}^{2}}y+54x{{y}^{2}}$
$\begin{align}
& \Rightarrow {{\left( 2x \right)}^{3}}+{{\left( 3y \right)}^{3}}+3{{\left( 2x \right)}^{2}}\left( 3y \right)+3\left( 2x \right){{\left( 3y \right)}^{2}} \\
& \text{We know that, }{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{2}}+3{{a}^{2}}b+3a{{b}^{2}} \\
\end{align}$
Thus, by using this identity
$\Rightarrow {{\left( 2x+3y \right)}^{3}}$
8) $343{{a}^{3}}-{{b}^{3}}-147{{a}^{2}}b+21a{{b}^{2}}$
$\begin{align}
& \Rightarrow {{\left( 7a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 7a \right)}^{2}}\left( b \right)+3\left( 7a \right){{\left( b \right)}^{2}} \\
& \text{Using the identity, }{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \\
& \Rightarrow {{\left( 7a-b \right)}^{3}} \\
\end{align}$
9) $3\sqrt{3}{{a}^{3}}+27{{b}^{3}}-{{c}^{3}}+9\sqrt{3}abc$
$\begin{align}
& \Rightarrow {{\left( \sqrt{3}a \right)}^{3}}+{{\left( 3b \right)}^{3}}+{{\left( -c \right)}^{3}}-3\left( \sqrt{3}a \right)\left( 3b \right)\left( -c \right) \\
& \text{Now, using the identity } \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right) \\
& \text{Applying the identity,} \\
& \Rightarrow \left( \sqrt{3}a+3b-c \right)\left( {{\left( \sqrt{3}a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( -c \right)}^{2}}-\left( \sqrt{3}a \right)\left( 3b \right)-\left( 3b \right)\left( -c \right)-\left( -c \right)\left( \sqrt{3}a \right) \right) \\
& \Rightarrow \left( \sqrt{3}a+3b-c \right)\left( 3{{a}^{2}}+9{{b}^{2}}+{{c}^{2}}-3\sqrt{3}ab+3bc+\sqrt{3}ca \right) \\
\end{align}$
Note:
Various algebraic identities are also used, in factoring the given number. Thus, knowledge about various algebraic identities is also required while factoring a number. A student must also pay attention while putting the mathematical signs in the equations.
Factorization means breaking or splitting up a number into smaller numbers, which when multiplied together form the same original number. In addition to this, the smaller numbers are known as the factors.
Complete step by step solution:
Now, factoring the given numbers:
1) ${{x}^{2}}+2x-63$
$\begin{align}
& \Rightarrow {{x}^{2}}+9x-7x-63 \\
& \Rightarrow x\left( x+9 \right)-7\left( x+9 \right) \\
& \therefore \left( x-7 \right)\left( x+9 \right) \\
\end{align}$
2) $6{{x}^{2}}-17x+12$
\[\begin{align}
& \Rightarrow 6{{x}^{2}}-8x-9x+12 \\
& \Rightarrow 2x\left( 3x-4 \right)-3\left( 3x-4 \right) \\
& \therefore \left( 2x-3 \right)\left( 3x-4 \right) \\
\end{align}\]
3) $25{{y}^{2}}+110y+121$
$\begin{align}
& \Rightarrow 25{{y}^{2}}+110y+121 \\
& \Rightarrow 25{{y}^{2}}+55y+55y+121 \\
& \Rightarrow 5y\left( 5y+11 \right)+11\left( 5y+11 \right) \\
& \Rightarrow \left( 5y+11 \right)\left( 5y+11 \right) \\
& \therefore {{\left( 5y+11 \right)}^{2}} \\
\end{align}$
4) ${{x}^{2}}+16{{y}^{2}}+64{{z}^{2}}-8xy-64yz+16zx$
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}+{{\left( -4y \right)}^{2}}+{{\left( 8z \right)}^{2}}+2\left( x \right)\left( -4y \right)+2\left( -4y \right)\left( 8z \right)+2\left( 8z \right)\left( x \right) \\
& \text{we know that, }{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
& \Rightarrow {{\left( x-4y+8z \right)}^{2}} \\
\end{align}\]
5) $25{{x}^{2}}+36{{y}^{2}}+49{{z}^{2}}+60xy-84yz-70zx$
$\begin{align}
& \Rightarrow {{\left( 5x \right)}^{2}}+{{\left( 6y \right)}^{2}}+{{\left( -7z \right)}^{2}}+2\left( 5x \right)\left( 6y \right)+2\left( 6y \right)\left( -7z \right)+2\left( -7z \right)\left( 5x \right) \\
& \text{We know that, }{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \\
& \Rightarrow {{\left( 5x+6y-7x \right)}^{2}} \\
\end{align}$
6) $8+64{{x}^{3}}$
$\begin{align}
& \Rightarrow {{\left( 2 \right)}^{3}}+{{\left( 4x \right)}^{3}} \\
& \text{We know that, }{{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
& \Rightarrow \left( 2+4x \right)\left( {{\left( 2 \right)}^{2}}-\left( 2 \right)\left( 4x \right)+{{\left( 4x \right)}^{2}} \right) \\
& \Rightarrow \left( 2+4x \right)\left( 4-8x+16{{x}^{2}} \right) \\
\end{align}$
7) $8{{x}^{3}}+27{{y}^{3}}+36{{x}^{2}}y+54x{{y}^{2}}$
$\begin{align}
& \Rightarrow {{\left( 2x \right)}^{3}}+{{\left( 3y \right)}^{3}}+3{{\left( 2x \right)}^{2}}\left( 3y \right)+3\left( 2x \right){{\left( 3y \right)}^{2}} \\
& \text{We know that, }{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{2}}+3{{a}^{2}}b+3a{{b}^{2}} \\
\end{align}$
Thus, by using this identity
$\Rightarrow {{\left( 2x+3y \right)}^{3}}$
8) $343{{a}^{3}}-{{b}^{3}}-147{{a}^{2}}b+21a{{b}^{2}}$
$\begin{align}
& \Rightarrow {{\left( 7a \right)}^{3}}-{{\left( b \right)}^{3}}-3{{\left( 7a \right)}^{2}}\left( b \right)+3\left( 7a \right){{\left( b \right)}^{2}} \\
& \text{Using the identity, }{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \\
& \Rightarrow {{\left( 7a-b \right)}^{3}} \\
\end{align}$
9) $3\sqrt{3}{{a}^{3}}+27{{b}^{3}}-{{c}^{3}}+9\sqrt{3}abc$
$\begin{align}
& \Rightarrow {{\left( \sqrt{3}a \right)}^{3}}+{{\left( 3b \right)}^{3}}+{{\left( -c \right)}^{3}}-3\left( \sqrt{3}a \right)\left( 3b \right)\left( -c \right) \\
& \text{Now, using the identity } \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right) \\
& \text{Applying the identity,} \\
& \Rightarrow \left( \sqrt{3}a+3b-c \right)\left( {{\left( \sqrt{3}a \right)}^{2}}+{{\left( 3b \right)}^{2}}+{{\left( -c \right)}^{2}}-\left( \sqrt{3}a \right)\left( 3b \right)-\left( 3b \right)\left( -c \right)-\left( -c \right)\left( \sqrt{3}a \right) \right) \\
& \Rightarrow \left( \sqrt{3}a+3b-c \right)\left( 3{{a}^{2}}+9{{b}^{2}}+{{c}^{2}}-3\sqrt{3}ab+3bc+\sqrt{3}ca \right) \\
\end{align}$
Note:
Various algebraic identities are also used, in factoring the given number. Thus, knowledge about various algebraic identities is also required while factoring a number. A student must also pay attention while putting the mathematical signs in the equations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

