
How do you factor the expression ${{a}^{4}}-81$ ?
Answer
563.1k+ views
Hint: We can use the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to this question .We can write ${{a}^{4}}$ as ${{\left( {{a}^{2}} \right)}^{2}}$ and 81 as ${{9}^{2}}$ then apply the formula to factorize the equation.
Complete step by step answer:
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
We can write ${{a}^{4}}-81$ as ${{\left( {{a}^{2}} \right)}^{2}}-{{9}^{2}}$ and apply the above formula. That gives us
$\Rightarrow {{\left( {{a}^{2}} \right)}^{2}}-{{9}^{2}}=\left( {{a}^{2}}+9 \right)\left( {{a}^{2}}-9 \right)$ …eq1
Now we have $\left( {{a}^{2}}+9 \right)\left( {{a}^{2}}-9 \right)$ we can write $\left( {{a}^{2}}-9 \right)$ as ${{a}^{2}}-{{3}^{2}}$ and apply the formula
$\left( {{a}^{2}}-9 \right)=\left( a+3 \right)\left( a-3 \right)$
Replacing $\left( {{a}^{2}}-9 \right)$ with $\left( a+3 \right)\left( a-3 \right)$ in eq1 we get
${{a}^{4}}-81=\left( {{a}^{2}}+9 \right)\left( a+3 \right)\left( a-3 \right)$
This is one way we can factorize the equation.
Note: Another way of solving the problem is using binomial theorem. We know that formula
For ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+.......+{{b}^{n-2}}a+{{b}^{n-1}} \right)$ where n is a positive integer we can apply this formula to solve this question we have ${{a}^{4}}-81$ we can replace 81 as ${{3}^{4}}$ in the equation the problem will be ${{a}^{4}}-{{3}^{4}}$ . Now if we replace b with 3 and n with 4 in the binomial theorem
We will get
$\Rightarrow \left( {{a}^{4}}-{{3}^{4}} \right)=\left( a-3 \right)\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$ …eq2
Now we have to factorize the second term in the equation that is $\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$
For that we can take common ${{a}^{2}}$ in the first half of the term and take 9 common in second half of the term
$\Rightarrow \left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)={{a}^{2}}\left( a+3 \right)+9\left( a+3 \right)$
Taking $a+3$ in the equation
$\Rightarrow {{a}^{2}}\left( a+3 \right)+9\left( a+3 \right)=\left( {{a}^{2}}+9 \right)\left( a+3 \right)$
By replacing $\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$ with $\left( {{a}^{2}}+9 \right)\left( a+3 \right)$ in eq2 we get
$\Rightarrow \left( {{a}^{4}}-{{3}^{4}} \right)=\left( a-3 \right)\left( a+3 \right)\left( {{a}^{2}}+9 \right)$
Remember the above binomial formula is valid when n is a positive integer. The first method is the shortest. This method will come to use while solving ${{a}^{n}}-{{b}^{n}}$ where n is equal to ${{2}^{m}};m\ge 0$
For example we can write
(1) ${{a}^{8}}-{{b}^{8}}=\left( a-b \right)\left( a+b \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{a}^{4}}+{{b}^{4}} \right)$
(2) ${{a}^{4}}-{{b}^{4}}=\left( a-b \right)\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}} \right)$
Whenever n is equal to ${{2}^{m}};m\ge 0$ we can use the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
m times to factorize the equation.
Complete step by step answer:
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
We can write ${{a}^{4}}-81$ as ${{\left( {{a}^{2}} \right)}^{2}}-{{9}^{2}}$ and apply the above formula. That gives us
$\Rightarrow {{\left( {{a}^{2}} \right)}^{2}}-{{9}^{2}}=\left( {{a}^{2}}+9 \right)\left( {{a}^{2}}-9 \right)$ …eq1
Now we have $\left( {{a}^{2}}+9 \right)\left( {{a}^{2}}-9 \right)$ we can write $\left( {{a}^{2}}-9 \right)$ as ${{a}^{2}}-{{3}^{2}}$ and apply the formula
$\left( {{a}^{2}}-9 \right)=\left( a+3 \right)\left( a-3 \right)$
Replacing $\left( {{a}^{2}}-9 \right)$ with $\left( a+3 \right)\left( a-3 \right)$ in eq1 we get
${{a}^{4}}-81=\left( {{a}^{2}}+9 \right)\left( a+3 \right)\left( a-3 \right)$
This is one way we can factorize the equation.
Note: Another way of solving the problem is using binomial theorem. We know that formula
For ${{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}+.......+{{b}^{n-2}}a+{{b}^{n-1}} \right)$ where n is a positive integer we can apply this formula to solve this question we have ${{a}^{4}}-81$ we can replace 81 as ${{3}^{4}}$ in the equation the problem will be ${{a}^{4}}-{{3}^{4}}$ . Now if we replace b with 3 and n with 4 in the binomial theorem
We will get
$\Rightarrow \left( {{a}^{4}}-{{3}^{4}} \right)=\left( a-3 \right)\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$ …eq2
Now we have to factorize the second term in the equation that is $\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$
For that we can take common ${{a}^{2}}$ in the first half of the term and take 9 common in second half of the term
$\Rightarrow \left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)={{a}^{2}}\left( a+3 \right)+9\left( a+3 \right)$
Taking $a+3$ in the equation
$\Rightarrow {{a}^{2}}\left( a+3 \right)+9\left( a+3 \right)=\left( {{a}^{2}}+9 \right)\left( a+3 \right)$
By replacing $\left( {{a}^{3}}+3{{a}^{2}}+9a+27 \right)$ with $\left( {{a}^{2}}+9 \right)\left( a+3 \right)$ in eq2 we get
$\Rightarrow \left( {{a}^{4}}-{{3}^{4}} \right)=\left( a-3 \right)\left( a+3 \right)\left( {{a}^{2}}+9 \right)$
Remember the above binomial formula is valid when n is a positive integer. The first method is the shortest. This method will come to use while solving ${{a}^{n}}-{{b}^{n}}$ where n is equal to ${{2}^{m}};m\ge 0$
For example we can write
(1) ${{a}^{8}}-{{b}^{8}}=\left( a-b \right)\left( a+b \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{a}^{4}}+{{b}^{4}} \right)$
(2) ${{a}^{4}}-{{b}^{4}}=\left( a-b \right)\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}} \right)$
Whenever n is equal to ${{2}^{m}};m\ge 0$ we can use the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
m times to factorize the equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

