
How do you factor ${{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}$?
Answer
560.4k+ views
Hint: We need to simplify the cubic polynomials of sum and difference of two numbers. We already have the identity of ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$. For the cube of difference of two numbers, we take ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. We take the addition of those two identities to find the factored form.
Complete step by step answer:
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
Therefore, the simplified form of ${{\left( a+b \right)}^{3}}$ is ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
Now we try to find a simplified form of ${{\left( a-b \right)}^{3}}$. Instead of $b$ we take $-b$ and get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}\left( -b \right)+3a{{\left( -b \right)}^{2}}+{{\left( -b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\].
Therefore, ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$.
We take the addition of the two identities to find the solution for ${{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}}$.
$\begin{align}
& {{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}} \\
& =\left( {{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \right)+\left( {{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \right) \\
& =2{{a}^{3}}+6a{{b}^{2}} \\
& =2a\left( {{a}^{2}}+3{{b}^{2}} \right) \\
\end{align}$
The multiplied form can’t be broken anymore. Therefore, this is the factored form also.
Therefore, \[{{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}}=2a\left( {{a}^{2}}+3{{b}^{2}} \right)\]. We replace values for $a=x;b=y$ and get
\[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}=2x\left( {{x}^{2}}+3{{y}^{2}} \right)\]
Now we take an example to verify the result. We take $x=2;y=1$.
The left-hand side of the equation becomes \[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}={{\left( 2+1 \right)}^{3}}+{{\left( 2-1 \right)}^{3}}={{3}^{3}}+{{1}^{3}}=28\]
The right-hand side of the equation becomes \[2x\left( {{x}^{2}}+3{{y}^{2}} \right)=2\times 2\left( {{2}^{2}}+3\times {{1}^{2}} \right)=4\times 7=28\].
Thus, verified that \[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}=2x\left( {{x}^{2}}+3{{y}^{2}} \right)\].
Note: We also can use the binomial theorem to find the general form and then put the value of 3. We have ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+....+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$. We need to find the cube of the sum of two numbers. So, we put $n=3$.
${{\left( a+b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}+{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}+{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$. In this way we also simplify the term of ${{\left( a+b \right)}^{3}}$.
Complete step by step answer:
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of the sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
Therefore, the simplified form of ${{\left( a+b \right)}^{3}}$ is ${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
Now we try to find a simplified form of ${{\left( a-b \right)}^{3}}$. Instead of $b$ we take $-b$ and get
\[{{\left( a-b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}\left( -b \right)+3a{{\left( -b \right)}^{2}}+{{\left( -b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}\].
Therefore, ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$.
We take the addition of the two identities to find the solution for ${{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}}$.
$\begin{align}
& {{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}} \\
& =\left( {{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \right)+\left( {{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} \right) \\
& =2{{a}^{3}}+6a{{b}^{2}} \\
& =2a\left( {{a}^{2}}+3{{b}^{2}} \right) \\
\end{align}$
The multiplied form can’t be broken anymore. Therefore, this is the factored form also.
Therefore, \[{{\left( a+b \right)}^{3}}+{{\left( a-b \right)}^{3}}=2a\left( {{a}^{2}}+3{{b}^{2}} \right)\]. We replace values for $a=x;b=y$ and get
\[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}=2x\left( {{x}^{2}}+3{{y}^{2}} \right)\]
Now we take an example to verify the result. We take $x=2;y=1$.
The left-hand side of the equation becomes \[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}={{\left( 2+1 \right)}^{3}}+{{\left( 2-1 \right)}^{3}}={{3}^{3}}+{{1}^{3}}=28\]
The right-hand side of the equation becomes \[2x\left( {{x}^{2}}+3{{y}^{2}} \right)=2\times 2\left( {{2}^{2}}+3\times {{1}^{2}} \right)=4\times 7=28\].
Thus, verified that \[{{\left( x+y \right)}^{3}}+{{\left( x-y \right)}^{3}}=2x\left( {{x}^{2}}+3{{y}^{2}} \right)\].
Note: We also can use the binomial theorem to find the general form and then put the value of 3. We have ${{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+....+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+....+{}^{n}{{C}_{n}}{{a}^{0}}{{b}^{n}}$. We need to find the cube of the sum of two numbers. So, we put $n=3$.
${{\left( a+b \right)}^{3}}={}^{3}{{C}_{0}}{{a}^{3}}{{b}^{0}}+{}^{3}{{C}_{1}}{{a}^{3-1}}{{b}^{1}}+{}^{3}{{C}_{2}}{{a}^{3-2}}{{b}^{2}}+{}^{3}{{C}_{3}}{{a}^{3-3}}{{b}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$. In this way we also simplify the term of ${{\left( a+b \right)}^{3}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

