
How do you factor \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\]?
Answer
534.3k+ views
Hint: From the given question we have to find the factor of \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\]. By observing it is in the form of \[{{x}^{3}}-{{y}^{3}}\]. We know that formula is \[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\] this formula is for difference of cubes as in the question there are perfect cubes, here we have to substitute \[x=a+b\] and \[y=a-b\] by solving we will get the required factors.
Complete step by step answer:
From the question given \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\].
Since both the terms are perfect cubes, we will find the factor by using the difference of cubes formula.
We know that the formula for difference of cubes \[{{x}^{3}}-{{y}^{3}}\] is
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
Here in the above formula, we have to substitute x as \[a+b\] and in place of y as \[a-b\] .
\[\Rightarrow x=a+b\]
\[\Rightarrow y=a-b\]
By substituting in the above formula, we will get,
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-\left( a-b \right) \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
In right hand side multiply – with a-b we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-a+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, cancel both a term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( b+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, add b term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a+b \right)}^{2}}\] as \[{{a}^{2}}+{{b}^{2}}+2ab\] ,
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, multiply \[\left( a+b \right)\left( a-b \right)\],
by multiplying we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a-b \right)}^{2}}\]as \[{{a}^{2}}+{{b}^{2}}-2ab\]
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{a}^{2}}+{{b}^{2}}-2ab \right)\]
Now, cancel the like terms with opposite signs,
By eliminating the like terms with opposite signs, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+{{a}^{2}}+{{a}^{2}} \right)\]
Now, add the like terms,
By adding like terms, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
Therefore, required factors are \[\left( 2b \right)\], \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\].
Note:
Students can do the above question by expanding the \[{{\left( a+b \right)}^{3}}\] and \[{{\left( a-b \right)}^{3}}\]i.e.,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}-\left( {{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right)\]
by simplifying the above equations, we will get the,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
If students are asked to find the complex factors then \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\] can be divided into \[\sqrt{3}a+ib\], \[\sqrt{3}a-ib\]
Therefore, the factors will be
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( \sqrt{3}a+ib \right)\left( \sqrt{3}a-ib \right)\]
Complete step by step answer:
From the question given \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\].
Since both the terms are perfect cubes, we will find the factor by using the difference of cubes formula.
We know that the formula for difference of cubes \[{{x}^{3}}-{{y}^{3}}\] is
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
Here in the above formula, we have to substitute x as \[a+b\] and in place of y as \[a-b\] .
\[\Rightarrow x=a+b\]
\[\Rightarrow y=a-b\]
By substituting in the above formula, we will get,
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-\left( a-b \right) \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
In right hand side multiply – with a-b we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-a+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, cancel both a term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( b+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, add b term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a+b \right)}^{2}}\] as \[{{a}^{2}}+{{b}^{2}}+2ab\] ,
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, multiply \[\left( a+b \right)\left( a-b \right)\],
by multiplying we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a-b \right)}^{2}}\]as \[{{a}^{2}}+{{b}^{2}}-2ab\]
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{a}^{2}}+{{b}^{2}}-2ab \right)\]
Now, cancel the like terms with opposite signs,
By eliminating the like terms with opposite signs, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+{{a}^{2}}+{{a}^{2}} \right)\]
Now, add the like terms,
By adding like terms, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
Therefore, required factors are \[\left( 2b \right)\], \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\].
Note:
Students can do the above question by expanding the \[{{\left( a+b \right)}^{3}}\] and \[{{\left( a-b \right)}^{3}}\]i.e.,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}-\left( {{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right)\]
by simplifying the above equations, we will get the,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
If students are asked to find the complex factors then \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\] can be divided into \[\sqrt{3}a+ib\], \[\sqrt{3}a-ib\]
Therefore, the factors will be
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( \sqrt{3}a+ib \right)\left( \sqrt{3}a-ib \right)\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

