
How do you factor \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\]?
Answer
548.1k+ views
Hint: From the given question we have to find the factor of \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\]. By observing it is in the form of \[{{x}^{3}}-{{y}^{3}}\]. We know that formula is \[{{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\] this formula is for difference of cubes as in the question there are perfect cubes, here we have to substitute \[x=a+b\] and \[y=a-b\] by solving we will get the required factors.
Complete step by step answer:
From the question given \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\].
Since both the terms are perfect cubes, we will find the factor by using the difference of cubes formula.
We know that the formula for difference of cubes \[{{x}^{3}}-{{y}^{3}}\] is
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
Here in the above formula, we have to substitute x as \[a+b\] and in place of y as \[a-b\] .
\[\Rightarrow x=a+b\]
\[\Rightarrow y=a-b\]
By substituting in the above formula, we will get,
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-\left( a-b \right) \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
In right hand side multiply – with a-b we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-a+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, cancel both a term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( b+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, add b term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a+b \right)}^{2}}\] as \[{{a}^{2}}+{{b}^{2}}+2ab\] ,
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, multiply \[\left( a+b \right)\left( a-b \right)\],
by multiplying we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a-b \right)}^{2}}\]as \[{{a}^{2}}+{{b}^{2}}-2ab\]
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{a}^{2}}+{{b}^{2}}-2ab \right)\]
Now, cancel the like terms with opposite signs,
By eliminating the like terms with opposite signs, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+{{a}^{2}}+{{a}^{2}} \right)\]
Now, add the like terms,
By adding like terms, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
Therefore, required factors are \[\left( 2b \right)\], \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\].
Note:
Students can do the above question by expanding the \[{{\left( a+b \right)}^{3}}\] and \[{{\left( a-b \right)}^{3}}\]i.e.,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}-\left( {{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right)\]
by simplifying the above equations, we will get the,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
If students are asked to find the complex factors then \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\] can be divided into \[\sqrt{3}a+ib\], \[\sqrt{3}a-ib\]
Therefore, the factors will be
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( \sqrt{3}a+ib \right)\left( \sqrt{3}a-ib \right)\]
Complete step by step answer:
From the question given \[{{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}\].
Since both the terms are perfect cubes, we will find the factor by using the difference of cubes formula.
We know that the formula for difference of cubes \[{{x}^{3}}-{{y}^{3}}\] is
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
Here in the above formula, we have to substitute x as \[a+b\] and in place of y as \[a-b\] .
\[\Rightarrow x=a+b\]
\[\Rightarrow y=a-b\]
By substituting in the above formula, we will get,
\[\Rightarrow {{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)\]
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-\left( a-b \right) \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
In right hand side multiply – with a-b we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( a+b-a+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, cancel both a term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( b+b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, add b term then we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{\left( a+b \right)}^{2}}+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a+b \right)}^{2}}\] as \[{{a}^{2}}+{{b}^{2}}+2ab\] ,
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+\left( a+b \right)\left( a-b \right)+{{\left( a-b \right)}^{2}} \right)\]
Now, multiply \[\left( a+b \right)\left( a-b \right)\],
by multiplying we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{\left( a-b \right)}^{2}} \right)\]
Now, expand \[{{\left( a-b \right)}^{2}}\]as \[{{a}^{2}}+{{b}^{2}}-2ab\]
By expanding as above we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+2ab+{{a}^{2}}-{{b}^{2}}+{{a}^{2}}+{{b}^{2}}-2ab \right)\]
Now, cancel the like terms with opposite signs,
By eliminating the like terms with opposite signs, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( {{a}^{2}}+{{b}^{2}}+{{a}^{2}}+{{a}^{2}} \right)\]
Now, add the like terms,
By adding like terms, we will get,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
Therefore, required factors are \[\left( 2b \right)\], \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\].
Note:
Students can do the above question by expanding the \[{{\left( a+b \right)}^{3}}\] and \[{{\left( a-b \right)}^{3}}\]i.e.,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}-\left( {{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}} \right)\]
by simplifying the above equations, we will get the,
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( 3{{a}^{2}}+{{b}^{2}} \right)\]
If students are asked to find the complex factors then \[\left( 3{{a}^{2}}+{{b}^{2}} \right)\] can be divided into \[\sqrt{3}a+ib\], \[\sqrt{3}a-ib\]
Therefore, the factors will be
\[\Rightarrow {{\left( a+b \right)}^{3}}-{{\left( a-b \right)}^{3}}=\left( 2b \right)\left( \sqrt{3}a+ib \right)\left( \sqrt{3}a-ib \right)\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

