
Express the following numbers in usual form.
(i) \[3.02 \times {10^{ - 6}}\]
(ii) \[4.5 \times {10^4}\]
(iii) \[3 \times {10^{ - 8}}\]
(iv) \[1.0001 \times {10^9}\]
(v) \[5.8 \times {10^{12}}\]
(vi) \[3.61492 \times {10^6}\]
Answer
588k+ views
Hint:These are problems of decimal functions. To solve these we will use exponential formulae. First we will convert these questions into fraction form then we will simplify it using exponential formulae to get the answer.
Complete step-by-step answer:
(i) \[3.02 \times {10^{ - 6}}\]
We can write the decimal in fraction form as,
$ = \dfrac{{302}}{{100}} \times {10^{ - 6}} $
$ = \dfrac{{302}}{{{{10}^2}}} \times {10^{ - 6}} $
We can write $ {10^{ - 6}} $ as $ \dfrac{1}{{{{10}^6}}} $ ,
$ = \dfrac{{302}}{{{{10}^2}}} \times \dfrac{1}{{{{10}^6}}} $
Multiplying the denominator using exponential formula $ {a^m} \times {a^n} = {a^{m + n}} $ we get,
$ = \dfrac{{302}}{{{{10}^{2 + 6}}}} $
$ = \dfrac{{302}}{{{{10}^8}}} $
Converting this into decimal form we get,
$ = 0.00000302 $
$ \therefore $ $ 3.02 \times {10^{ - 6}} = 0.00000302 $
(ii) \[4.5 \times {10^4}\]
We can write the decimal in fraction form as,
$ = \dfrac{{45}}{{10}} \times {10^4} $
We can write it as,
$ = 45 \times \dfrac{{{{10}^4}}}{{10}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 45 \times {10^{4 - 1}} $
$ = 45 \times {10^3} $
Converting this into decimal form we get,
$ = 45000 $
$ \therefore $ $ 4.5 \times {10^4} = 45000 $
(iii) \[3 \times {10^{ - 8}}\]
We can write the decimal in fraction form as,
\[ = \dfrac{3}{{{{10}^8}}}\]
Converting this into decimal form we get,
$ = 0.00000003 $
$ \therefore $ $ 3 \times {10^{ - 8}} = 0.00000003 $
(iv) \[1.0001 \times {10^9}\]
We can write the decimal in fraction form as,
$ = \dfrac{{10001}}{{10000}} \times {10^9} $
We can write 10000 as $ {10^4} $ ,
$ = \dfrac{{10001}}{{{{10}^4}}} \times {10^9} $
$ = 10001 \times \dfrac{{{{10}^9}}}{{{{10}^4}}} $
Multiplying the denominator using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 10001 \times {10^{9 - 4}} $
$ = 10001 \times {10^5} $
Converting this into decimal form we get,
$ = 1000100000 $
$ \therefore $ $ 1.0001 \times {10^9} = 1000100000 $
(v) \[5.8 \times {10^{12}}\]
We can write the decimal in fraction form as,
$ = \dfrac{{58}}{{10}} \times {10^{12}} $
$ = 58 \times \dfrac{{{{10}^{12}}}}{{10}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 58 \times {10^{12 - 1}} $
$ = 58 \times {10^{11}} $
Converting this into decimal form we get,
$ = 5800000000000 $
$ \therefore $ $ 5.8 \times {10^{12}} = 5800000000000 $
(vi) \[3.61492 \times {10^6}\]
We can write the decimal in fraction form as,
$ = \dfrac{{361492}}{{100000}} \times {10^6} $
We can write 100000 as $ {10^5} $ ,
$ = \dfrac{{361492}}{{{{10}^5}}} \times {10^6} $
$ = 361492 \times \dfrac{{{{10}^6}}}{{{{10}^5}}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 361492 \times {10^{6 - 5}} $
$ = 361492 \times 10 $
Converting this into decimal form we get,
$ = 3614920 $
$ \therefore $ $ 3.61492 \times {10^6} = 3614920 $
Note:In algebra a decimal number can be defined as a number whose whole number part and fractional part is separated by a decimal point.A fraction represents a part of a whole.Students should remember all the formulae, properties and rules of decimal function, fraction and exponential function.
Complete step-by-step answer:
(i) \[3.02 \times {10^{ - 6}}\]
We can write the decimal in fraction form as,
$ = \dfrac{{302}}{{100}} \times {10^{ - 6}} $
$ = \dfrac{{302}}{{{{10}^2}}} \times {10^{ - 6}} $
We can write $ {10^{ - 6}} $ as $ \dfrac{1}{{{{10}^6}}} $ ,
$ = \dfrac{{302}}{{{{10}^2}}} \times \dfrac{1}{{{{10}^6}}} $
Multiplying the denominator using exponential formula $ {a^m} \times {a^n} = {a^{m + n}} $ we get,
$ = \dfrac{{302}}{{{{10}^{2 + 6}}}} $
$ = \dfrac{{302}}{{{{10}^8}}} $
Converting this into decimal form we get,
$ = 0.00000302 $
$ \therefore $ $ 3.02 \times {10^{ - 6}} = 0.00000302 $
(ii) \[4.5 \times {10^4}\]
We can write the decimal in fraction form as,
$ = \dfrac{{45}}{{10}} \times {10^4} $
We can write it as,
$ = 45 \times \dfrac{{{{10}^4}}}{{10}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 45 \times {10^{4 - 1}} $
$ = 45 \times {10^3} $
Converting this into decimal form we get,
$ = 45000 $
$ \therefore $ $ 4.5 \times {10^4} = 45000 $
(iii) \[3 \times {10^{ - 8}}\]
We can write the decimal in fraction form as,
\[ = \dfrac{3}{{{{10}^8}}}\]
Converting this into decimal form we get,
$ = 0.00000003 $
$ \therefore $ $ 3 \times {10^{ - 8}} = 0.00000003 $
(iv) \[1.0001 \times {10^9}\]
We can write the decimal in fraction form as,
$ = \dfrac{{10001}}{{10000}} \times {10^9} $
We can write 10000 as $ {10^4} $ ,
$ = \dfrac{{10001}}{{{{10}^4}}} \times {10^9} $
$ = 10001 \times \dfrac{{{{10}^9}}}{{{{10}^4}}} $
Multiplying the denominator using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 10001 \times {10^{9 - 4}} $
$ = 10001 \times {10^5} $
Converting this into decimal form we get,
$ = 1000100000 $
$ \therefore $ $ 1.0001 \times {10^9} = 1000100000 $
(v) \[5.8 \times {10^{12}}\]
We can write the decimal in fraction form as,
$ = \dfrac{{58}}{{10}} \times {10^{12}} $
$ = 58 \times \dfrac{{{{10}^{12}}}}{{10}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 58 \times {10^{12 - 1}} $
$ = 58 \times {10^{11}} $
Converting this into decimal form we get,
$ = 5800000000000 $
$ \therefore $ $ 5.8 \times {10^{12}} = 5800000000000 $
(vi) \[3.61492 \times {10^6}\]
We can write the decimal in fraction form as,
$ = \dfrac{{361492}}{{100000}} \times {10^6} $
We can write 100000 as $ {10^5} $ ,
$ = \dfrac{{361492}}{{{{10}^5}}} \times {10^6} $
$ = 361492 \times \dfrac{{{{10}^6}}}{{{{10}^5}}} $
Using exponential formula $ \dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}} $ we get,
$ = 361492 \times {10^{6 - 5}} $
$ = 361492 \times 10 $
Converting this into decimal form we get,
$ = 3614920 $
$ \therefore $ $ 3.61492 \times {10^6} = 3614920 $
Note:In algebra a decimal number can be defined as a number whose whole number part and fractional part is separated by a decimal point.A fraction represents a part of a whole.Students should remember all the formulae, properties and rules of decimal function, fraction and exponential function.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

