Answer
Verified
431.1k+ views
Hint: Start by rationalizing the term . Use trigonometric identities and conversion formulas to simplify the fraction. Separate the real and imaginary part after simplification , the result obtained will be in the form of A + iB.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers