Express the following in the form A + iB .
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Answer
Verified
469.8k+ views
Hint: Start by rationalizing the term . Use trigonometric identities and conversion formulas to simplify the fraction. Separate the real and imaginary part after simplification , the result obtained will be in the form of A + iB.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE