Answer
Verified
399.3k+ views
Hint: For this problem we need to write the given confidence interval in form of $p\pm E$. We know that the $p$ denotes the sample proportion and $E$ denotes the margin of error. First, we will calculate the margin of error and after that we will use this value to calculate the sample proportion. We know that the margin error is the half of the difference between the given limits. So, we will calculate the margin error for the given limits. Now we will use this value and consider either lower limit or upper limit to calculate the sample proportion. If you consider the upper limit, we will subtract the margin of error from the upper limit. If you consider the lower limit, we will add the margin of error to the lower limit to calculate the sample proportion. After getting both the values we will write it in required form.
Complete step by step solution:
Given confidence interval $0.111 < p < 0.333$.
The upper limit in the above interval is $0.333$.
The lower limit in the above interval is $0.111$.
Difference between the both the limits is $0.333-0.111=0.222$.
Half of the difference between the both the limits is $\dfrac{0.222}{2}=0.111$.
Hence the Margin of error is $E=0.111$.
Considering the lower limit of the given interval which is $0.111$.
To calculate the sample proportion, we are going to add the margin of error to the lower limit then we will get
$p=0.111+0.111=0.222$
Now the confidence interval in $p\pm E$ from is $0.222\pm 0.111$.
Note:
We can also calculate the sample proportion without calculating the margin of error. We have the formula for the sample proportion which is
$p=\dfrac{U.L+L.L}{2}$
So, we will calculate the average of the given limits and that will be our sample proportion.
Complete step by step solution:
Given confidence interval $0.111 < p < 0.333$.
The upper limit in the above interval is $0.333$.
The lower limit in the above interval is $0.111$.
Difference between the both the limits is $0.333-0.111=0.222$.
Half of the difference between the both the limits is $\dfrac{0.222}{2}=0.111$.
Hence the Margin of error is $E=0.111$.
Considering the lower limit of the given interval which is $0.111$.
To calculate the sample proportion, we are going to add the margin of error to the lower limit then we will get
$p=0.111+0.111=0.222$
Now the confidence interval in $p\pm E$ from is $0.222\pm 0.111$.
Note:
We can also calculate the sample proportion without calculating the margin of error. We have the formula for the sample proportion which is
$p=\dfrac{U.L+L.L}{2}$
So, we will calculate the average of the given limits and that will be our sample proportion.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell