
Express \[\left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right)\] as an equivalent fraction with a rational denominator.
Answer
517.8k+ views
Hint: Write the number in fraction and rationalize it. If the number is not giving a rational denominator, then rationalize it again to get the desired result.
Complete step-by-step answer:
According to question, the given number is \[\left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right)\]. Let this number is \[N\]. So we have:
\[ \Rightarrow N = \left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right) = \dfrac{{{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}}}{{{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}}} .....(i)\].
If we put \[9\] as \[{3^2}\], our number will be:
\[ \Rightarrow N = \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} - {3^{\dfrac{1}{4}}}}}\]
Rationalizing the number by multiplying and dividing by the conjugate of denominator, we’ll get:
\[ \Rightarrow N = \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} - {3^{\dfrac{1}{4}}}}} \times \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}\]
Using formulas \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] we’ll get:
\[ \Rightarrow N = \dfrac{{5 + {3^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{1}{4}}}}}{{5 - {3^{\dfrac{1}{2}}}}}\]
Rationalizing it one more time, we’ll get:
\[ \Rightarrow N = \dfrac{{5 + {3^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{1}{4}}}}}{{5 - {3^{\dfrac{1}{2}}}}} \times \dfrac{{5 + {3^{\dfrac{1}{2}}}}}{{5 + {3^{\dfrac{1}{2}}}}}\]
Using \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] in denominator and multiplying step by step in numerator, we’ll get:
\[ \Rightarrow N = \dfrac{{25 + {{5.3}^{\dfrac{1}{2}}} + {{5.3}^{\dfrac{1}{2}}} + 3 + {{2.5}^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{{5^2} - 3}}\]
Simplifying it further, we’ll get:
\[
\Rightarrow N = \dfrac{{28 + {{2.5.3}^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{22}} \\
\Rightarrow N = \dfrac{{2\left( {14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}} \right)}}{{22}} \\
\Rightarrow N = \dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}} \\
\]
Putting back the value of \[N\] from equation \[(i)\], we’ll get:
\[ \Rightarrow \left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right) = \dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}}\]
The equivalent fraction of the number with a rational denominator is \[\dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}}\].
Note: In order to rationalize the denominator, we have to multiply the numerator and denominator by a radical that will get rid of the radical in the denominator. Make sure that all radicals are simplified. Simplify the fraction if needed.
Complete step-by-step answer:
According to question, the given number is \[\left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right)\]. Let this number is \[N\]. So we have:
\[ \Rightarrow N = \left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right) = \dfrac{{{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}}}{{{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}}} .....(i)\].
If we put \[9\] as \[{3^2}\], our number will be:
\[ \Rightarrow N = \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} - {3^{\dfrac{1}{4}}}}}\]
Rationalizing the number by multiplying and dividing by the conjugate of denominator, we’ll get:
\[ \Rightarrow N = \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} - {3^{\dfrac{1}{4}}}}} \times \dfrac{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}{{{5^{\dfrac{1}{2}}} + {3^{\dfrac{1}{4}}}}}\]
Using formulas \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] and \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] we’ll get:
\[ \Rightarrow N = \dfrac{{5 + {3^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{1}{4}}}}}{{5 - {3^{\dfrac{1}{2}}}}}\]
Rationalizing it one more time, we’ll get:
\[ \Rightarrow N = \dfrac{{5 + {3^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{1}{4}}}}}{{5 - {3^{\dfrac{1}{2}}}}} \times \dfrac{{5 + {3^{\dfrac{1}{2}}}}}{{5 + {3^{\dfrac{1}{2}}}}}\]
Using \[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\] in denominator and multiplying step by step in numerator, we’ll get:
\[ \Rightarrow N = \dfrac{{25 + {{5.3}^{\dfrac{1}{2}}} + {{5.3}^{\dfrac{1}{2}}} + 3 + {{2.5}^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{{5^2} - 3}}\]
Simplifying it further, we’ll get:
\[
\Rightarrow N = \dfrac{{28 + {{2.5.3}^{\dfrac{1}{2}}} + {{2.5}^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {{2.5}^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{22}} \\
\Rightarrow N = \dfrac{{2\left( {14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}} \right)}}{{22}} \\
\Rightarrow N = \dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}} \\
\]
Putting back the value of \[N\] from equation \[(i)\], we’ll get:
\[ \Rightarrow \left( {{5^{\dfrac{1}{2}}} + {9^{\dfrac{1}{8}}}} \right) \div \left( {{5^{\dfrac{1}{2}}} - {9^{\dfrac{1}{8}}}} \right) = \dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}}\]
The equivalent fraction of the number with a rational denominator is \[\dfrac{{14 + {{5.3}^{\dfrac{1}{2}}} + {5^{\dfrac{3}{2}}}{{.3}^{\dfrac{1}{4}}} + {5^{\dfrac{1}{2}}}{{.3}^{\dfrac{3}{4}}}}}{{11}}\].
Note: In order to rationalize the denominator, we have to multiply the numerator and denominator by a radical that will get rid of the radical in the denominator. Make sure that all radicals are simplified. Simplify the fraction if needed.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Find the area of the minor segment of a circle of radius class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the relation between mean median and mode a class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
