
How do you express $\dfrac{1}{{{x}^{6}}-{{x}^{3}}}$ in partial fractions?
Answer
445.2k+ views
Hint: Firstly, we need to take out the common factor ${{x}^{3}}$ from the denominator to get $\dfrac{1}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}$. On adding and subtracting ${{x}^{3}}$ in the numerator, the fraction will be split as \[-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}\]. Using the algebraic identity ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{3}}+ab+{{b}^{3}} \right)$, the fraction \[\dfrac{1}{\left( {{x}^{3}}-1 \right)}\] can be written as \[\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}\]. Finally, on writing \[\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a}{\left( x-1 \right)}+\dfrac{bx+c}{\left( {{x}^{2}}+x+1 \right)}\] and on equating the coefficients by comparing, we will get the values of $a$, $b$ and $c$ and hence the given fraction will be finally expressed in the partial fractions.
Complete step by step solution:
Let us write the expression given in the above question as
$\Rightarrow E=\dfrac{1}{{{x}^{6}}-{{x}^{3}}}$
Taking ${{x}^{3}}$ common in the denominator, we get
$\Rightarrow E=\dfrac{1}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}$
Adding and subtracting ${{x}^{3}}$ in the numerator, we get
\[\begin{align}
& \Rightarrow E=\dfrac{1-{{x}^{3}}+{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\
& \Rightarrow E=\dfrac{1-{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}+\dfrac{{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\
& \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}........\left( i \right) \\
\end{align}\]
Now, let \[u=\dfrac{1}{\left( {{x}^{3}}-1 \right)}.......\left( ii \right)\].
$\Rightarrow u=\dfrac{1}{\left( {{x}^{3}}-{{1}^{3}} \right)}$
We know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{3}}+ab+{{b}^{3}} \right)$. Applying this in the denominator, we get
\[\begin{align}
& \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+{{1}^{2}} \right)} \\
& \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
\end{align}\]
For splitting the above into partial fractions, we write
\[\Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a}{\left( x-1 \right)}+\dfrac{bx+c}{\left( {{x}^{2}}+x+1 \right)}......\left( iii \right)\]
Taking LCM on the RHS we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a\left( {{x}^{2}}+x+1 \right)+\left( bx+c \right)\left( x-1 \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a{{x}^{2}}+ax+a+b{{x}^{2}}-bx+cx-c}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
\end{align}\]
Writing the numerator on the LHS in terms of that on the RHS, we get
\[\Rightarrow \dfrac{\left( 0 \right){{x}^{2}}+\left( 0 \right)x+1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}\]
On equating the coefficients of ${{x}^{2}}$, and the constant terms, we get
$\begin{align}
& \Rightarrow a+b=0 \\
& \Rightarrow b=-a......\left( iv \right) \\
\end{align}$
On equating the coefficients of $x$, we get
$\Rightarrow a-b+c=0$
Substituting (i) in the above equation, we get
$\begin{align}
& \Rightarrow a-\left( -a \right)+c=0 \\
& \Rightarrow a+a+c=0 \\
& \Rightarrow 2a+c=0 \\
& \Rightarrow c=-2a......\left( v \right) \\
\end{align}$
Now, equating the constant terms, we get
$\Rightarrow a-c=1$
Substituting (v) we get
$\begin{align}
& \Rightarrow a-\left( -2a \right)=1 \\
& \Rightarrow a+2a=1 \\
& \Rightarrow 3a=1 \\
& \Rightarrow a=\dfrac{1}{3}......\left( vi \right) \\
\end{align}$
Substituting (vi) in (iv) we get
$\Rightarrow b=-\dfrac{1}{3}.......\left( vii \right)$
Now, substituting (vi) in (v) we get
\[\Rightarrow c=-\dfrac{2}{3}........\left( viii \right)\]
Substituting (vi), (vii) and (viii) in (iii) we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\dfrac{1}{3}}{\left( x-1 \right)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
& \Rightarrow u=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
\end{align}\]
Therefore, from (i) the given expression becomes
$\begin{align}
& \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
& \Rightarrow E=\dfrac{1}{3\left( x-1 \right)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}-\dfrac{1}{{{x}^{3}}} \\
\end{align}$
Hence, the given expression is expressed in partial fractions.
Note: Do not end your solution at the split form \[-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}\] since the fraction \[\dfrac{1}{\left( {{x}^{3}}-1 \right)}\] can be further split into the partial fractions. Whenever the denominator of a fraction can be factorized, it can be split into the partial fractions. We must note that the degree of the numerator of a partial fraction is always one less than that of the denominator.
Complete step by step solution:
Let us write the expression given in the above question as
$\Rightarrow E=\dfrac{1}{{{x}^{6}}-{{x}^{3}}}$
Taking ${{x}^{3}}$ common in the denominator, we get
$\Rightarrow E=\dfrac{1}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}$
Adding and subtracting ${{x}^{3}}$ in the numerator, we get
\[\begin{align}
& \Rightarrow E=\dfrac{1-{{x}^{3}}+{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\
& \Rightarrow E=\dfrac{1-{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)}+\dfrac{{{x}^{3}}}{{{x}^{3}}\left( {{x}^{3}}-1 \right)} \\
& \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}........\left( i \right) \\
\end{align}\]
Now, let \[u=\dfrac{1}{\left( {{x}^{3}}-1 \right)}.......\left( ii \right)\].
$\Rightarrow u=\dfrac{1}{\left( {{x}^{3}}-{{1}^{3}} \right)}$
We know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{3}}+ab+{{b}^{3}} \right)$. Applying this in the denominator, we get
\[\begin{align}
& \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+{{1}^{2}} \right)} \\
& \Rightarrow u=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
\end{align}\]
For splitting the above into partial fractions, we write
\[\Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a}{\left( x-1 \right)}+\dfrac{bx+c}{\left( {{x}^{2}}+x+1 \right)}......\left( iii \right)\]
Taking LCM on the RHS we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a\left( {{x}^{2}}+x+1 \right)+\left( bx+c \right)\left( x-1 \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{a{{x}^{2}}+ax+a+b{{x}^{2}}-bx+cx-c}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)} \\
\end{align}\]
Writing the numerator on the LHS in terms of that on the RHS, we get
\[\Rightarrow \dfrac{\left( 0 \right){{x}^{2}}+\left( 0 \right)x+1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\left( a+b \right){{x}^{2}}+\left( a-b+c \right)x+\left( a-c \right)}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}\]
On equating the coefficients of ${{x}^{2}}$, and the constant terms, we get
$\begin{align}
& \Rightarrow a+b=0 \\
& \Rightarrow b=-a......\left( iv \right) \\
\end{align}$
On equating the coefficients of $x$, we get
$\Rightarrow a-b+c=0$
Substituting (i) in the above equation, we get
$\begin{align}
& \Rightarrow a-\left( -a \right)+c=0 \\
& \Rightarrow a+a+c=0 \\
& \Rightarrow 2a+c=0 \\
& \Rightarrow c=-2a......\left( v \right) \\
\end{align}$
Now, equating the constant terms, we get
$\Rightarrow a-c=1$
Substituting (v) we get
$\begin{align}
& \Rightarrow a-\left( -2a \right)=1 \\
& \Rightarrow a+2a=1 \\
& \Rightarrow 3a=1 \\
& \Rightarrow a=\dfrac{1}{3}......\left( vi \right) \\
\end{align}$
Substituting (vi) in (iv) we get
$\Rightarrow b=-\dfrac{1}{3}.......\left( vii \right)$
Now, substituting (vi) in (v) we get
\[\Rightarrow c=-\dfrac{2}{3}........\left( viii \right)\]
Substituting (vi), (vii) and (viii) in (iii) we get
\[\begin{align}
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{\dfrac{1}{3}}{\left( x-1 \right)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)} \\
& \Rightarrow \dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
& \Rightarrow u=\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
\end{align}\]
Therefore, from (i) the given expression becomes
$\begin{align}
& \Rightarrow E=-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{3}\left( \dfrac{1}{\left( x-1 \right)}-\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} \right) \\
& \Rightarrow E=\dfrac{1}{3\left( x-1 \right)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}-\dfrac{1}{{{x}^{3}}} \\
\end{align}$
Hence, the given expression is expressed in partial fractions.
Note: Do not end your solution at the split form \[-\dfrac{1}{{{x}^{3}}}+\dfrac{1}{\left( {{x}^{3}}-1 \right)}\] since the fraction \[\dfrac{1}{\left( {{x}^{3}}-1 \right)}\] can be further split into the partial fractions. Whenever the denominator of a fraction can be factorized, it can be split into the partial fractions. We must note that the degree of the numerator of a partial fraction is always one less than that of the denominator.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
