
Express $1.3\overline{2}+0.\overline{35}$ as a fraction in the simplest form.
Answer
559.5k+ views
Hint:
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
A fraction can be defined as a part of a whole. A fraction consists of two parts: numerator and denominator. The simplest form of a fraction is the state when numerator and denominator cannot be divided any further, while still being whole numbers.
Complete step by step solution:
Let $x=1.3\overline{2}=1.322222.......\text{ }.....\left( 1 \right)$
Now, multiplying equation (1) by $10$
$\Rightarrow 10x=13.22222.......\text{ }.....\text{(2)}$
Now again, multiplying equation (2) by
$\Rightarrow 10\times 10x=132.22222........\text{ }.....\left( 3 \right)$
Here, subtracting equation (2) from (3)
$\begin{align}
& \Rightarrow 100x-10x=132.22222-13.22222 \\
& \Rightarrow 90x=119 \\
& \therefore x=\dfrac{119}{90} \\
\end{align}$
Now again, let $y=0.\overline{35}=0.353535........\text{ }.....\left( 4 \right)$
Here, multiplying equation (4) by $100$
$\Rightarrow 100y=35.353535........\text{ }.....\left( 5 \right)$
Subtracting equation (4) from equation (5)
$\begin{align}
& \Rightarrow 100y-y=35.353535-0.353535 \\
& \Rightarrow 99y=35 \\
& \therefore y=\dfrac{35}{99} \\
\end{align}$
We know that,
$\Rightarrow 1.3\overline{2}+0.\overline{35}=x+y$
Hence,
$\begin{align}
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119}{90}+\dfrac{35}{99} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{119\times 11+35\times 10}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1309+350}{990} \\
& \Rightarrow 1.3\overline{2}+0.\overline{35}=\dfrac{1659}{990} \\
& \therefore1.3\overline{2}+0.\overline{35}=\dfrac{553}{330} \\
\end{align}$
Hence, the value is $\dfrac{553}{330}$.
Note:
Always keep in mind that the digits needed to be multiplied by $10$ till all the required digits are on the left side. You only want one “set” of repeating digits on the left side of the decimal. For example, in this question the first digit has $2$ as the repeating digit, thus you only want one $2$ on the left of the decimal. In the second number repeating digits are $35$, thus you’d only want one set of $35$ on the left side.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


