
Explain positive, negative and zero work. Give one example of each.
Answer
598.5k+ views
Hint: Write formula of work $W=\overrightarrow{F}\cdot \overrightarrow{r}$. Learn dot product of two forces. For positive work, W should be positive so for this find an angle between force and displacement.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Dot product of two component A and B
$\overrightarrow{A}\cdot \overrightarrow{B}=AB\cos \theta $
Where $\theta $ is the angle between two vectors.
$\overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta $
Find $\theta $ for positive W, negative W and zero W.
Complete step by step answer:
The work done by a force on a particle during a displacement is given as
$W=\overrightarrow{F}\cdot \overrightarrow{r}$
Here, W = work
$\overrightarrow{F}$= force
$\overrightarrow{r}$= displacement
Positive work done – The work done is said to be positive when force and displacement are in the same direction.
$\begin{align}
& \theta ={{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{0}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=Fr \\
\end{align}$
Hence, work is positive.
Zero work – the work done is said to be zero when force and displacement are perpendicular to each other.
$\begin{align}
& \theta ={{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{90}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=0 \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=0 \\
\end{align}$
Hence, work is zero
Negative work done – The work done is said to be negative when force and displacement are in opposite directions.
$\begin{align}
& \theta ={{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos \theta \\
& \overrightarrow{F}\cdot \overrightarrow{r}=Fr\cos {{180}^{{}^\circ }} \\
& \overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
& W=\overrightarrow{F}\cdot \overrightarrow{r}=-Fr \\
\end{align}$
Hence, work is negative.
Note: Work done by friction is always zero because friction force and displacement act in opposite directions. When a spring travels from A to B and from B back to A then work done during the return journey is negative of the work during the onwards journey and the net work done by the spring is zero.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

