
Explain binomial series .
Answer
410.1k+ views
Hint: We have to state what binomial series is . We also have to give the expression for the expansion of sum or difference of two terms using the binomial theorem . I also use the concept of permutation and combination for expanding the binomial theorem . We also state the concept of Pascal’s Triangle .
Complete step-by-step answer:
Definition of binomial series :
Binomial series is the method of expanding the terms of sum or difference of two variables of an expansion which are raised to any finite power \[\left( {{\text{ }}n{\text{ }}} \right),\] where n belongs to natural number . The expansion is used in various sections such as trigonometric formulas , algebra , probability etc .
The expansion of sum of two variables is given by the formula :
$ {(x + y)^n} = n{C_0}{x^n} + n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............... + n{C_n}{y^n} $
The expansion of difference of two variables is given by the formula :
$ {(x - y)^n} = n{C_0}{x^n} + ( - 1) \times n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............. + {( - 1)^n} \times n{C_n}{y^n} $
The expansion for various value of n :
$ {(A + B)^0} = 1 $
$ {(A + B)^1} = A + B $
$ {(A + B)^2} = {A^2} + 2AB + {B^2} $
$ {(A + B)^3} = {A^3} + 3 \times {A^2} \times B + 3 \times A \times {B^2} + {B^3} $
$ {(A + B)^4} = 4{C_0}{A^4} + 4{C_1}{A^3} \times B + 4{C_2}{A^2} \times {B^2} + 4{C_3}A \times {B^3} + 4{C_4}{B^4} $
( using the values of combinations )
$ {(A + B)^4} = {A^4} + 4 \times {A^3} \times B + 6{A^2} \times {B^2} + 4A \times {B^3} + {B^4} $
From the above expression we can conclude that the total number of terms in the expression are \[1\] more than the power of the expression .
The sum of powers of variables of the expansion should be equal to the power of the original term .
Some other expressions for the expansion :
$ {(x + y)^n} + {(x + y)^n} = 2 \times [n{C_0}{x^n} + n{C_2}{x^{(n - 1)}}{y^2} + n{C_4}{x^{(n - 4)}}{y^4} + .............] $ ———(1)
$ {(x + y)^n} - {(x - y)^n} = 2 \times [n{C_1}{x^{(n - 1)}}y + n{C_3}{x^{(n - 3)}}{y^3} + n{C_5}{x^{(n - 5)}}{y^5} + .............] $ ———(2)
$ {(1 + x)^n} = [n{C_0} + n{C_1}x + n{C_2}{x^2} + {\text{ }}....... + n{C_n}{x^n}] $
$ {(1 + x)^n} + {(1 - x)^n} = 2 \times [n{C_0} + n{C_2}{x^2} + n{C_4}{x^4} + ..........] $
$ {(1 + x)^n} - {(1 - x)^n} = 2 \times [n{C_1}x + n{C_3}{x^3} + n{C_5}{x^5} + .................] $
The number of terms in the expansion\[\;\left( 1 \right)\]are \[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }}}}{2}\]if is even or\[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2}\] if is odd .
The number of terms in the expansion \[\left( 2 \right)\]are \[\dfrac{n}{2}\]if is even or\[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2}\] if is odd .
Note: Corresponding to each combination of \[{}^n{C_r}\]we have \[r!\]permutations, because $ r $ objects in every combination can be rearranged in \[r!\]ways . Hence , the total number of permutations of $ n $ different things taken $ r $ at a time is\[{}^n{C_r}{\text{ }} \times {\text{ }}r!\]. Thus \[{}^n{P_r}{\text{ }} = {\text{ }}{}^n{C_r}{\text{ }} \times {\text{ }}r!{\text{ }},{\text{ }}0 < {\text{ }}r{\text{ }} \leqslant n\;\]
Also , some formulas used :
\[{}^n{C_1}{\text{ }} = {\text{ }}n\]
\[{}^n{C_2} = \dfrac{{{\text{ }}n\left( {n - 1} \right)}}{2}\]
\[{}^n{C_0}{\text{ }} = {\text{ }}1\]
\[{}^n{C_n} = {\text{ }}1\]
Complete step-by-step answer:
Definition of binomial series :
Binomial series is the method of expanding the terms of sum or difference of two variables of an expansion which are raised to any finite power \[\left( {{\text{ }}n{\text{ }}} \right),\] where n belongs to natural number . The expansion is used in various sections such as trigonometric formulas , algebra , probability etc .
The expansion of sum of two variables is given by the formula :
$ {(x + y)^n} = n{C_0}{x^n} + n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............... + n{C_n}{y^n} $
The expansion of difference of two variables is given by the formula :
$ {(x - y)^n} = n{C_0}{x^n} + ( - 1) \times n{C_1}{x^{(n - 1)}} \times y + n{C_2}{x^{(n - 2)}} \times {y^2} + ............. + {( - 1)^n} \times n{C_n}{y^n} $
The expansion for various value of n :
$ {(A + B)^0} = 1 $
$ {(A + B)^1} = A + B $
$ {(A + B)^2} = {A^2} + 2AB + {B^2} $
$ {(A + B)^3} = {A^3} + 3 \times {A^2} \times B + 3 \times A \times {B^2} + {B^3} $
$ {(A + B)^4} = 4{C_0}{A^4} + 4{C_1}{A^3} \times B + 4{C_2}{A^2} \times {B^2} + 4{C_3}A \times {B^3} + 4{C_4}{B^4} $
( using the values of combinations )
$ {(A + B)^4} = {A^4} + 4 \times {A^3} \times B + 6{A^2} \times {B^2} + 4A \times {B^3} + {B^4} $
From the above expression we can conclude that the total number of terms in the expression are \[1\] more than the power of the expression .
The sum of powers of variables of the expansion should be equal to the power of the original term .
Some other expressions for the expansion :
$ {(x + y)^n} + {(x + y)^n} = 2 \times [n{C_0}{x^n} + n{C_2}{x^{(n - 1)}}{y^2} + n{C_4}{x^{(n - 4)}}{y^4} + .............] $ ———(1)
$ {(x + y)^n} - {(x - y)^n} = 2 \times [n{C_1}{x^{(n - 1)}}y + n{C_3}{x^{(n - 3)}}{y^3} + n{C_5}{x^{(n - 5)}}{y^5} + .............] $ ———(2)
$ {(1 + x)^n} = [n{C_0} + n{C_1}x + n{C_2}{x^2} + {\text{ }}....... + n{C_n}{x^n}] $
$ {(1 + x)^n} + {(1 - x)^n} = 2 \times [n{C_0} + n{C_2}{x^2} + n{C_4}{x^4} + ..........] $
$ {(1 + x)^n} - {(1 - x)^n} = 2 \times [n{C_1}x + n{C_3}{x^3} + n{C_5}{x^5} + .................] $
The number of terms in the expansion\[\;\left( 1 \right)\]are \[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ }}2{\text{ }}} \right){\text{ }}}}{2}\]if is even or\[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2}\] if is odd .
The number of terms in the expansion \[\left( 2 \right)\]are \[\dfrac{n}{2}\]if is even or\[\dfrac{{\left( {{\text{ }}n{\text{ }} + {\text{ 1 }}} \right){\text{ }}}}{2}\] if is odd .
Note: Corresponding to each combination of \[{}^n{C_r}\]we have \[r!\]permutations, because $ r $ objects in every combination can be rearranged in \[r!\]ways . Hence , the total number of permutations of $ n $ different things taken $ r $ at a time is\[{}^n{C_r}{\text{ }} \times {\text{ }}r!\]. Thus \[{}^n{P_r}{\text{ }} = {\text{ }}{}^n{C_r}{\text{ }} \times {\text{ }}r!{\text{ }},{\text{ }}0 < {\text{ }}r{\text{ }} \leqslant n\;\]
Also , some formulas used :
\[{}^n{C_1}{\text{ }} = {\text{ }}n\]
\[{}^n{C_2} = \dfrac{{{\text{ }}n\left( {n - 1} \right)}}{2}\]
\[{}^n{C_0}{\text{ }} = {\text{ }}1\]
\[{}^n{C_n} = {\text{ }}1\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
