
Expand using binomial theorem \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\], \[x\ne 0\] and let the sum of coefficient of the terms in the expansion be t. Find 10000t.
Answer
509.4k+ views
Hint: In the above question, we will use the formula of binomial expansion to expand the given expression and the formula is as follows:
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]
We will use the above formula for n = 4 and thus we will get all the coefficient of the terms in the expansion.
Complete step-by-step answer:
We know that \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]. For n = 4, we as follows:
\[\begin{align}
& {{\left( a+b \right)}^{4}}{{=}^{4}}{{C}_{0}}{{a}^{4}}{{+}^{4}}{{C}_{1}}{{a}^{3}}{{b}^{1}}{{+}^{4}}{{C}_{2}}{{a}^{2}}{{b}^{2}}{{+}^{4}}{{C}_{3}}{{a}^{1}}{{b}^{3}}{{+}^{4}}{{C}_{4}}{{b}^{4}} \\
& =\dfrac{4!}{0!\left( 4-0 \right)!}{{a}^{4}}+\dfrac{4!}{1\times \left( 4-1 \right)!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{b}^{4}} \\
& =\dfrac{4!}{1\times 4!}{{a}^{4}}+\dfrac{4!}{1\times 3!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\times 2!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\times 1}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!0!}{{b}^{4}} \\
& ={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}.....(1) \\
\end{align}\]
Hence, \[{{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}\].
We have been given the expression \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\].
On substituting \[a=\left( 1+\dfrac{x}{2} \right)\] and \[b=\left( -\dfrac{2}{x} \right)\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}={{\left( 1+\dfrac{x}{2} \right)}^{4}}+4{{\left( 1+\dfrac{x}{2} \right)}^{3}}\left( \dfrac{-2}{x} \right)+6{{\left( 1+\dfrac{x}{2} \right)}^{2}}{{\left( \dfrac{-2}{x} \right)}^{2}}+4\left( 1+\dfrac{x}{2} \right){{\left( \dfrac{-2}{x} \right)}^{3}}+{{\left( \dfrac{-2}{x} \right)}^{4}} \\
& ={{\left( 1+\dfrac{x}{2} \right)}^{4}}-\dfrac{8}{x}{{\left( 1+\dfrac{x}{2} \right)}^{3}}+\dfrac{24}{{{x}^{2}}}{{\left( 1+\dfrac{x}{2} \right)}^{2}}-\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Now we will solve \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\] separately.
We have \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\].
On using the equation (1) and substituting a = 1 and b = \[\dfrac{x}{4}\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{4}}={{\left( 1 \right)}^{4}}+4{{\left( 1 \right)}^{3}}\left( \dfrac{x}{2} \right)+6{{\left( 1 \right)}^{2}}{{\left( \dfrac{x}{2} \right)}^{2}}+4\left( 1 \right){{\left( \dfrac{x}{2} \right)}^{3}}+{{\left( \dfrac{x}{2} \right)}^{4}} \\
& =1+4\left( \dfrac{x}{2} \right)+6\left( \dfrac{{{x}^{2}}}{4} \right)+4\left( \dfrac{{{x}^{3}}}{8} \right)+\left( \dfrac{{{x}^{4}}}{16} \right) \\
& =1+2x+\dfrac{3}{2}{{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \\
\end{align}\]
Now we have \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\].
As we know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{3}}={{1}^{3}}+{{\left( \dfrac{x}{2} \right)}^{3}}+3\times 1\times \dfrac{x}{2}\left( 1+\dfrac{x}{2} \right) \\
& =1+\dfrac{{{x}^{3}}}{8}+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4} \\
& =1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \\
\end{align}\]
On substituting the values of \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\], we get as follows:
\[\begin{align}
& {{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\dfrac{8}{x}\left( 1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \right)+\dfrac{24}{{{x}^{2}}}\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}}+2\times 1\times \dfrac{x}{2} \right) \\
& -\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
& =\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\left( \dfrac{8}{x}+12+6x+{{x}^{2}} \right)+\left( \dfrac{24}{{{x}^{2}}}+\dfrac{24}{{{x}^{2}}}\times \dfrac{{{x}^{2}}}{4}+\dfrac{24}{{{x}^{2}}}\times x \right)-\left( \dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{2}}} \right)+\dfrac{16}{{{x}^{4}}} \\
& =1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16}-\dfrac{8}{x}-12-6x-{{x}^{2}}+\dfrac{24}{{{x}^{2}}}+6+\dfrac{24}{x}-\dfrac{32}{{{x}^{3}}}-\dfrac{16}{{{x}^{2}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{3{{x}^{2}}}{2}-{{x}^{2}}+2x-6x+1-12+6-\dfrac{8}{x}+\dfrac{24}{x}+\dfrac{24}{{{x}^{2}}}-\dfrac{16}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Thus, \[{{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}}\].
The coefficient of the terms are \[\dfrac{1}{16},\dfrac{1}{2},-4,-5,16,8,-32,16\].
\[\begin{align}
& t=\dfrac{1}{16}+\dfrac{1}{2}+\dfrac{1}{2}-4-5+16+8-32+16 \\
& t=\dfrac{1}{16}+1-9+16+16-24 \\
& t=\dfrac{1}{16}-8+8 \\
& t=\dfrac{1}{16} \\
\end{align}\]
So, \[10000t=10000\times \dfrac{1}{16}=625\].
Therefore, the value of 10000t equals 625.
Note: Take care of the sign and be careful at each and every step of calculation as there is a chance that you might make a mistake with the signs. Also, remember the point that in competitive examination, if we are asked to find the sum of coefficients of the expression given in the question then we can get the answer by substituting x = 1 in the expression.
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]
We will use the above formula for n = 4 and thus we will get all the coefficient of the terms in the expansion.
Complete step-by-step answer:
We know that \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]. For n = 4, we as follows:
\[\begin{align}
& {{\left( a+b \right)}^{4}}{{=}^{4}}{{C}_{0}}{{a}^{4}}{{+}^{4}}{{C}_{1}}{{a}^{3}}{{b}^{1}}{{+}^{4}}{{C}_{2}}{{a}^{2}}{{b}^{2}}{{+}^{4}}{{C}_{3}}{{a}^{1}}{{b}^{3}}{{+}^{4}}{{C}_{4}}{{b}^{4}} \\
& =\dfrac{4!}{0!\left( 4-0 \right)!}{{a}^{4}}+\dfrac{4!}{1\times \left( 4-1 \right)!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{b}^{4}} \\
& =\dfrac{4!}{1\times 4!}{{a}^{4}}+\dfrac{4!}{1\times 3!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\times 2!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\times 1}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!0!}{{b}^{4}} \\
& ={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}.....(1) \\
\end{align}\]
Hence, \[{{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}\].
We have been given the expression \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\].
On substituting \[a=\left( 1+\dfrac{x}{2} \right)\] and \[b=\left( -\dfrac{2}{x} \right)\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}={{\left( 1+\dfrac{x}{2} \right)}^{4}}+4{{\left( 1+\dfrac{x}{2} \right)}^{3}}\left( \dfrac{-2}{x} \right)+6{{\left( 1+\dfrac{x}{2} \right)}^{2}}{{\left( \dfrac{-2}{x} \right)}^{2}}+4\left( 1+\dfrac{x}{2} \right){{\left( \dfrac{-2}{x} \right)}^{3}}+{{\left( \dfrac{-2}{x} \right)}^{4}} \\
& ={{\left( 1+\dfrac{x}{2} \right)}^{4}}-\dfrac{8}{x}{{\left( 1+\dfrac{x}{2} \right)}^{3}}+\dfrac{24}{{{x}^{2}}}{{\left( 1+\dfrac{x}{2} \right)}^{2}}-\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Now we will solve \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\] separately.
We have \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\].
On using the equation (1) and substituting a = 1 and b = \[\dfrac{x}{4}\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{4}}={{\left( 1 \right)}^{4}}+4{{\left( 1 \right)}^{3}}\left( \dfrac{x}{2} \right)+6{{\left( 1 \right)}^{2}}{{\left( \dfrac{x}{2} \right)}^{2}}+4\left( 1 \right){{\left( \dfrac{x}{2} \right)}^{3}}+{{\left( \dfrac{x}{2} \right)}^{4}} \\
& =1+4\left( \dfrac{x}{2} \right)+6\left( \dfrac{{{x}^{2}}}{4} \right)+4\left( \dfrac{{{x}^{3}}}{8} \right)+\left( \dfrac{{{x}^{4}}}{16} \right) \\
& =1+2x+\dfrac{3}{2}{{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \\
\end{align}\]
Now we have \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\].
As we know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{3}}={{1}^{3}}+{{\left( \dfrac{x}{2} \right)}^{3}}+3\times 1\times \dfrac{x}{2}\left( 1+\dfrac{x}{2} \right) \\
& =1+\dfrac{{{x}^{3}}}{8}+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4} \\
& =1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \\
\end{align}\]
On substituting the values of \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\], we get as follows:
\[\begin{align}
& {{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\dfrac{8}{x}\left( 1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \right)+\dfrac{24}{{{x}^{2}}}\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}}+2\times 1\times \dfrac{x}{2} \right) \\
& -\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
& =\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\left( \dfrac{8}{x}+12+6x+{{x}^{2}} \right)+\left( \dfrac{24}{{{x}^{2}}}+\dfrac{24}{{{x}^{2}}}\times \dfrac{{{x}^{2}}}{4}+\dfrac{24}{{{x}^{2}}}\times x \right)-\left( \dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{2}}} \right)+\dfrac{16}{{{x}^{4}}} \\
& =1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16}-\dfrac{8}{x}-12-6x-{{x}^{2}}+\dfrac{24}{{{x}^{2}}}+6+\dfrac{24}{x}-\dfrac{32}{{{x}^{3}}}-\dfrac{16}{{{x}^{2}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{3{{x}^{2}}}{2}-{{x}^{2}}+2x-6x+1-12+6-\dfrac{8}{x}+\dfrac{24}{x}+\dfrac{24}{{{x}^{2}}}-\dfrac{16}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Thus, \[{{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}}\].
The coefficient of the terms are \[\dfrac{1}{16},\dfrac{1}{2},-4,-5,16,8,-32,16\].
\[\begin{align}
& t=\dfrac{1}{16}+\dfrac{1}{2}+\dfrac{1}{2}-4-5+16+8-32+16 \\
& t=\dfrac{1}{16}+1-9+16+16-24 \\
& t=\dfrac{1}{16}-8+8 \\
& t=\dfrac{1}{16} \\
\end{align}\]
So, \[10000t=10000\times \dfrac{1}{16}=625\].
Therefore, the value of 10000t equals 625.
Note: Take care of the sign and be careful at each and every step of calculation as there is a chance that you might make a mistake with the signs. Also, remember the point that in competitive examination, if we are asked to find the sum of coefficients of the expression given in the question then we can get the answer by substituting x = 1 in the expression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
