
Expand using binomial theorem \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\], \[x\ne 0\] and let the sum of coefficient of the terms in the expansion be t. Find 10000t.
Answer
589.2k+ views
Hint: In the above question, we will use the formula of binomial expansion to expand the given expression and the formula is as follows:
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]
We will use the above formula for n = 4 and thus we will get all the coefficient of the terms in the expansion.
Complete step-by-step answer:
We know that \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]. For n = 4, we as follows:
\[\begin{align}
& {{\left( a+b \right)}^{4}}{{=}^{4}}{{C}_{0}}{{a}^{4}}{{+}^{4}}{{C}_{1}}{{a}^{3}}{{b}^{1}}{{+}^{4}}{{C}_{2}}{{a}^{2}}{{b}^{2}}{{+}^{4}}{{C}_{3}}{{a}^{1}}{{b}^{3}}{{+}^{4}}{{C}_{4}}{{b}^{4}} \\
& =\dfrac{4!}{0!\left( 4-0 \right)!}{{a}^{4}}+\dfrac{4!}{1\times \left( 4-1 \right)!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{b}^{4}} \\
& =\dfrac{4!}{1\times 4!}{{a}^{4}}+\dfrac{4!}{1\times 3!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\times 2!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\times 1}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!0!}{{b}^{4}} \\
& ={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}.....(1) \\
\end{align}\]
Hence, \[{{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}\].
We have been given the expression \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\].
On substituting \[a=\left( 1+\dfrac{x}{2} \right)\] and \[b=\left( -\dfrac{2}{x} \right)\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}={{\left( 1+\dfrac{x}{2} \right)}^{4}}+4{{\left( 1+\dfrac{x}{2} \right)}^{3}}\left( \dfrac{-2}{x} \right)+6{{\left( 1+\dfrac{x}{2} \right)}^{2}}{{\left( \dfrac{-2}{x} \right)}^{2}}+4\left( 1+\dfrac{x}{2} \right){{\left( \dfrac{-2}{x} \right)}^{3}}+{{\left( \dfrac{-2}{x} \right)}^{4}} \\
& ={{\left( 1+\dfrac{x}{2} \right)}^{4}}-\dfrac{8}{x}{{\left( 1+\dfrac{x}{2} \right)}^{3}}+\dfrac{24}{{{x}^{2}}}{{\left( 1+\dfrac{x}{2} \right)}^{2}}-\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Now we will solve \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\] separately.
We have \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\].
On using the equation (1) and substituting a = 1 and b = \[\dfrac{x}{4}\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{4}}={{\left( 1 \right)}^{4}}+4{{\left( 1 \right)}^{3}}\left( \dfrac{x}{2} \right)+6{{\left( 1 \right)}^{2}}{{\left( \dfrac{x}{2} \right)}^{2}}+4\left( 1 \right){{\left( \dfrac{x}{2} \right)}^{3}}+{{\left( \dfrac{x}{2} \right)}^{4}} \\
& =1+4\left( \dfrac{x}{2} \right)+6\left( \dfrac{{{x}^{2}}}{4} \right)+4\left( \dfrac{{{x}^{3}}}{8} \right)+\left( \dfrac{{{x}^{4}}}{16} \right) \\
& =1+2x+\dfrac{3}{2}{{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \\
\end{align}\]
Now we have \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\].
As we know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{3}}={{1}^{3}}+{{\left( \dfrac{x}{2} \right)}^{3}}+3\times 1\times \dfrac{x}{2}\left( 1+\dfrac{x}{2} \right) \\
& =1+\dfrac{{{x}^{3}}}{8}+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4} \\
& =1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \\
\end{align}\]
On substituting the values of \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\], we get as follows:
\[\begin{align}
& {{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\dfrac{8}{x}\left( 1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \right)+\dfrac{24}{{{x}^{2}}}\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}}+2\times 1\times \dfrac{x}{2} \right) \\
& -\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
& =\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\left( \dfrac{8}{x}+12+6x+{{x}^{2}} \right)+\left( \dfrac{24}{{{x}^{2}}}+\dfrac{24}{{{x}^{2}}}\times \dfrac{{{x}^{2}}}{4}+\dfrac{24}{{{x}^{2}}}\times x \right)-\left( \dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{2}}} \right)+\dfrac{16}{{{x}^{4}}} \\
& =1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16}-\dfrac{8}{x}-12-6x-{{x}^{2}}+\dfrac{24}{{{x}^{2}}}+6+\dfrac{24}{x}-\dfrac{32}{{{x}^{3}}}-\dfrac{16}{{{x}^{2}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{3{{x}^{2}}}{2}-{{x}^{2}}+2x-6x+1-12+6-\dfrac{8}{x}+\dfrac{24}{x}+\dfrac{24}{{{x}^{2}}}-\dfrac{16}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Thus, \[{{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}}\].
The coefficient of the terms are \[\dfrac{1}{16},\dfrac{1}{2},-4,-5,16,8,-32,16\].
\[\begin{align}
& t=\dfrac{1}{16}+\dfrac{1}{2}+\dfrac{1}{2}-4-5+16+8-32+16 \\
& t=\dfrac{1}{16}+1-9+16+16-24 \\
& t=\dfrac{1}{16}-8+8 \\
& t=\dfrac{1}{16} \\
\end{align}\]
So, \[10000t=10000\times \dfrac{1}{16}=625\].
Therefore, the value of 10000t equals 625.
Note: Take care of the sign and be careful at each and every step of calculation as there is a chance that you might make a mistake with the signs. Also, remember the point that in competitive examination, if we are asked to find the sum of coefficients of the expression given in the question then we can get the answer by substituting x = 1 in the expression.
\[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]
We will use the above formula for n = 4 and thus we will get all the coefficient of the terms in the expansion.
Complete step-by-step answer:
We know that \[{{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{n}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+...{{+}^{n}}{{C}_{n}}{{b}^{n}}\]. For n = 4, we as follows:
\[\begin{align}
& {{\left( a+b \right)}^{4}}{{=}^{4}}{{C}_{0}}{{a}^{4}}{{+}^{4}}{{C}_{1}}{{a}^{3}}{{b}^{1}}{{+}^{4}}{{C}_{2}}{{a}^{2}}{{b}^{2}}{{+}^{4}}{{C}_{3}}{{a}^{1}}{{b}^{3}}{{+}^{4}}{{C}_{4}}{{b}^{4}} \\
& =\dfrac{4!}{0!\left( 4-0 \right)!}{{a}^{4}}+\dfrac{4!}{1\times \left( 4-1 \right)!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{b}^{4}} \\
& =\dfrac{4!}{1\times 4!}{{a}^{4}}+\dfrac{4!}{1\times 3!}{{a}^{3}}{{b}^{1}}+\dfrac{4!}{2!\times 2!}{{a}^{2}}{{b}^{2}}+\dfrac{4!}{3!\times 1}{{a}^{1}}{{b}^{3}}+\dfrac{4!}{4!0!}{{b}^{4}} \\
& ={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}.....(1) \\
\end{align}\]
Hence, \[{{\left( a+b \right)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}\].
We have been given the expression \[{{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}\].
On substituting \[a=\left( 1+\dfrac{x}{2} \right)\] and \[b=\left( -\dfrac{2}{x} \right)\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2}-\dfrac{2}{x} \right)}^{4}}={{\left( 1+\dfrac{x}{2} \right)}^{4}}+4{{\left( 1+\dfrac{x}{2} \right)}^{3}}\left( \dfrac{-2}{x} \right)+6{{\left( 1+\dfrac{x}{2} \right)}^{2}}{{\left( \dfrac{-2}{x} \right)}^{2}}+4\left( 1+\dfrac{x}{2} \right){{\left( \dfrac{-2}{x} \right)}^{3}}+{{\left( \dfrac{-2}{x} \right)}^{4}} \\
& ={{\left( 1+\dfrac{x}{2} \right)}^{4}}-\dfrac{8}{x}{{\left( 1+\dfrac{x}{2} \right)}^{3}}+\dfrac{24}{{{x}^{2}}}{{\left( 1+\dfrac{x}{2} \right)}^{2}}-\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Now we will solve \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\] separately.
We have \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\].
On using the equation (1) and substituting a = 1 and b = \[\dfrac{x}{4}\], we get as follows:
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{4}}={{\left( 1 \right)}^{4}}+4{{\left( 1 \right)}^{3}}\left( \dfrac{x}{2} \right)+6{{\left( 1 \right)}^{2}}{{\left( \dfrac{x}{2} \right)}^{2}}+4\left( 1 \right){{\left( \dfrac{x}{2} \right)}^{3}}+{{\left( \dfrac{x}{2} \right)}^{4}} \\
& =1+4\left( \dfrac{x}{2} \right)+6\left( \dfrac{{{x}^{2}}}{4} \right)+4\left( \dfrac{{{x}^{3}}}{8} \right)+\left( \dfrac{{{x}^{4}}}{16} \right) \\
& =1+2x+\dfrac{3}{2}{{x}^{2}}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \\
\end{align}\]
Now we have \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\].
As we know that \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\]
\[\begin{align}
& {{\left( 1+\dfrac{x}{2} \right)}^{3}}={{1}^{3}}+{{\left( \dfrac{x}{2} \right)}^{3}}+3\times 1\times \dfrac{x}{2}\left( 1+\dfrac{x}{2} \right) \\
& =1+\dfrac{{{x}^{3}}}{8}+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4} \\
& =1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \\
\end{align}\]
On substituting the values of \[{{\left( 1+\dfrac{x}{2} \right)}^{4}}\] and \[{{\left( 1+\dfrac{x}{2} \right)}^{3}}\], we get as follows:
\[\begin{align}
& {{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\dfrac{8}{x}\left( 1+\dfrac{3x}{2}+\dfrac{3{{x}^{2}}}{4}+\dfrac{{{x}^{3}}}{8} \right)+\dfrac{24}{{{x}^{2}}}\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}}+2\times 1\times \dfrac{x}{2} \right) \\
& -\dfrac{32}{{{x}^{3}}}\left( 1+\dfrac{x}{2} \right)+\dfrac{16}{{{x}^{4}}} \\
& =\left( 1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16} \right)-\left( \dfrac{8}{x}+12+6x+{{x}^{2}} \right)+\left( \dfrac{24}{{{x}^{2}}}+\dfrac{24}{{{x}^{2}}}\times \dfrac{{{x}^{2}}}{4}+\dfrac{24}{{{x}^{2}}}\times x \right)-\left( \dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{2}}} \right)+\dfrac{16}{{{x}^{4}}} \\
& =1+2x+\dfrac{3{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{4}}}{16}-\dfrac{8}{x}-12-6x-{{x}^{2}}+\dfrac{24}{{{x}^{2}}}+6+\dfrac{24}{x}-\dfrac{32}{{{x}^{3}}}-\dfrac{16}{{{x}^{2}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{3{{x}^{2}}}{2}-{{x}^{2}}+2x-6x+1-12+6-\dfrac{8}{x}+\dfrac{24}{x}+\dfrac{24}{{{x}^{2}}}-\dfrac{16}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
& =\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}} \\
\end{align}\]
Thus, \[{{\left[ \left( 1+\dfrac{x}{2} \right)-\dfrac{2}{x} \right]}^{4}}=\dfrac{{{x}^{4}}}{16}+\dfrac{{{x}^{3}}}{2}+\dfrac{{{x}^{2}}}{2}-4x-5+\dfrac{16}{x}+\dfrac{8}{{{x}^{2}}}-\dfrac{32}{{{x}^{3}}}+\dfrac{16}{{{x}^{4}}}\].
The coefficient of the terms are \[\dfrac{1}{16},\dfrac{1}{2},-4,-5,16,8,-32,16\].
\[\begin{align}
& t=\dfrac{1}{16}+\dfrac{1}{2}+\dfrac{1}{2}-4-5+16+8-32+16 \\
& t=\dfrac{1}{16}+1-9+16+16-24 \\
& t=\dfrac{1}{16}-8+8 \\
& t=\dfrac{1}{16} \\
\end{align}\]
So, \[10000t=10000\times \dfrac{1}{16}=625\].
Therefore, the value of 10000t equals 625.
Note: Take care of the sign and be careful at each and every step of calculation as there is a chance that you might make a mistake with the signs. Also, remember the point that in competitive examination, if we are asked to find the sum of coefficients of the expression given in the question then we can get the answer by substituting x = 1 in the expression.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

