
Expand using algebraic identity: \[{\left( {b - 7} \right)^2}\]
Answer
550.8k+ views
Hint: Here, we have to expand the term by using the algebraic identity. Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols. In elementary algebra, the symbols representing quantities without having fixed values are known as variables.
Formula used:
We will use the formula of the square of difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] where \[a\] and \[b\] are two numbers.
Complete step-by-step answer:
We are given an algebraic expression \[{\left( {b - 7} \right)^2}\].
Now, we have to expand the algebraic expression using an algebraic identity.
Now, substituting \[a = b\] and \[b = 7\] in the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + {7^2} - 2 \cdot b \cdot 7\]
The square of the variable \[b\] is \[{b^2}\] .
The square of the number \[7\] is \[49\] .
The product of the number and the variable is \[14b\] .
So by substituting the values, we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + 49 - 14b\] .
Therefore, the algebraic expansion of \[{\left( {b - 7} \right)^2}\]is \[{b^2} + 49 - 14b\].
Note: The algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of polynomials. .
An algebraic expression is an expression which consists of variables and constants. In expressions, a variable can take any value. Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
Formula used:
We will use the formula of the square of difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] where \[a\] and \[b\] are two numbers.
Complete step-by-step answer:
We are given an algebraic expression \[{\left( {b - 7} \right)^2}\].
Now, we have to expand the algebraic expression using an algebraic identity.
Now, substituting \[a = b\] and \[b = 7\] in the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + {7^2} - 2 \cdot b \cdot 7\]
The square of the variable \[b\] is \[{b^2}\] .
The square of the number \[7\] is \[49\] .
The product of the number and the variable is \[14b\] .
So by substituting the values, we have
\[ \Rightarrow {\left( {b - 7} \right)^2} = {b^2} + 49 - 14b\] .
Therefore, the algebraic expansion of \[{\left( {b - 7} \right)^2}\]is \[{b^2} + 49 - 14b\].
Note: The algebraic equations which are valid for all values of variables in them are called algebraic identities. They are also used for the factorization of polynomials. .
An algebraic expression is an expression which consists of variables and constants. In expressions, a variable can take any value. Thus, the expression value can change if the variable values are changed. But algebraic identity is equality which is true for all the values of the variables.
Recently Updated Pages
Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE


