
Expand the following expressions:
\[\left( i \right)\left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)\]
\[\left( ii \right){{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}\]
Answer
585.6k+ views
Hint: To solve the given question, we will open both the given brackets using the rule of multiplication given as \[\left( a+b \right)\left( x+y \right)=ax+ay+bx+by.\] Using this, we will assume \[a=3{{x}^{4}},b=5,etc.\] for all the terms given in (i) and (ii) and hence solve accordingly.
Complete step by step answer:
The multiplication of expansion of two given brackets product is given by the formula
\[\left( a+b \right)\left( x+y \right)=a\left( x+y \right)+b\left( x+y \right)\]
\[\Rightarrow \left( a+b \right)\left( x+y \right)=ax+ay+bx+by\]
So, we will use this technique in both (i) and (ii) to solve further.
\[\left( i \right)\left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)\]
Using the formula and process stated above, we have,
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=3{{x}^{4+5}}7-6{{x}^{4+1}}-35{{x}^{5}}+10x\]
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-6{{x}^{5}}-35{{x}^{5}}+10x\]
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-41{{x}^{5}}+10x\]
So, the value of \[\left( i \right)\left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-41{{x}^{5}}+10x.\]
\[\left( ii \right){{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}\]
To solve this part, we will separately solve \[{{\left( 2x-7 \right)}^{2}}\] and \[{{\left( 3x+5 \right)}^{3}}.\]
The formula of \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and of \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right).\]
So, using the above stated formula of \[{{\left( a-b \right)}^{2}}\] on \[{{\left( 2x-7 \right)}^{2}}\] we get,
\[{{\left( 2x-7 \right)}^{2}}={{\left( 2x \right)}^{2}}-2\times 2x\times 7+{{\left( 7 \right)}^{2}}\]
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}=4{{x}^{2}}-28x+49\]
Again using the above stated formula of \[{{\left( a+b \right)}^{3}}\] in \[{{\left( 3x+5 \right)}^{3}}\] we get,
\[{{\left( 3x+5 \right)}^{3}}={{\left( 3x \right)}^{3}}+{{5}^{3}}+3\times 3x\times 5\left( 3x+5 \right)\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+45x\left( 3x+5 \right)\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+45x\times 3{{x}^{2}}+45\times 5x\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+135{{x}^{2}}+225x\]
So, we finally have,
\[{{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=\left( 4{{x}^{2}}-28x+49 \right)\left( 27{{x}^{3}}+125+135{{x}^{2}}+225x \right)\]
Using, \[{{x}^{m}}.{{x}^{n}}={{x}^{m+n}},\] we get,
\[\begin{align}
& \Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=4\times 27{{x}^{5}}+4\times 125{{x}^{2}}+4\times 135{{x}^{4}}+225\times 4{{x}^{3}}-28\times 27{{x}^{4}}-28\times 125x \\
& -28\times 135{{x}^{3}}-28\times 225{{x}^{2}}+49\,\times 27{{x}^{3}}+49\times 125+49\times 135{{x}^{2}}+49\times 225x \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}+500{{x}^{2}}+540{{x}^{4}}+900{{x}^{3}}-756{{x}^{4}}-3500x-3780{{x}^{3}} \\
& -6300{{x}^{2}}+1323{{x}^{3}}+6125+6615{{x}^{2}}+11025x \\
\end{align}\]
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}-216{{x}^{4}}+815{{x}^{2}}+7525x-1557{{x}^{3}}+6125\]
Therefore, we get
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}-216{{x}^{4}}-1557{{x}^{3}}+815{{x}^{2}}+7525x+6125\]
Note:
Another way to solve the part \[{{\left( 3x+5 \right)}^{3}}\] can be directed by using \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}.\] We have used the formula \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right).\] Both of the above formulas are the same and hence the answer would be the same. One key point to note here in this question is that while multiplying \[\left( 4{{x}^{2}}-28x+49 \right)\] to \[\left( 27{{x}^{3}}+125+135{{x}^{2}}+225x \right)\] the minus in “– 28” should be taken care of while multiplying.
Complete step by step answer:
The multiplication of expansion of two given brackets product is given by the formula
\[\left( a+b \right)\left( x+y \right)=a\left( x+y \right)+b\left( x+y \right)\]
\[\Rightarrow \left( a+b \right)\left( x+y \right)=ax+ay+bx+by\]
So, we will use this technique in both (i) and (ii) to solve further.
\[\left( i \right)\left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)\]
Using the formula and process stated above, we have,
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=3{{x}^{4+5}}7-6{{x}^{4+1}}-35{{x}^{5}}+10x\]
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-6{{x}^{5}}-35{{x}^{5}}+10x\]
\[\Rightarrow \left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-41{{x}^{5}}+10x\]
So, the value of \[\left( i \right)\left( 3{{x}^{4}}-5 \right)\left( 7{{x}^{5}}-2x \right)=21{{x}^{9}}-41{{x}^{5}}+10x.\]
\[\left( ii \right){{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}\]
To solve this part, we will separately solve \[{{\left( 2x-7 \right)}^{2}}\] and \[{{\left( 3x+5 \right)}^{3}}.\]
The formula of \[{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\] and of \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right).\]
So, using the above stated formula of \[{{\left( a-b \right)}^{2}}\] on \[{{\left( 2x-7 \right)}^{2}}\] we get,
\[{{\left( 2x-7 \right)}^{2}}={{\left( 2x \right)}^{2}}-2\times 2x\times 7+{{\left( 7 \right)}^{2}}\]
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}=4{{x}^{2}}-28x+49\]
Again using the above stated formula of \[{{\left( a+b \right)}^{3}}\] in \[{{\left( 3x+5 \right)}^{3}}\] we get,
\[{{\left( 3x+5 \right)}^{3}}={{\left( 3x \right)}^{3}}+{{5}^{3}}+3\times 3x\times 5\left( 3x+5 \right)\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+45x\left( 3x+5 \right)\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+45x\times 3{{x}^{2}}+45\times 5x\]
\[\Rightarrow {{\left( 3x+5 \right)}^{3}}=27{{x}^{3}}+125+135{{x}^{2}}+225x\]
So, we finally have,
\[{{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=\left( 4{{x}^{2}}-28x+49 \right)\left( 27{{x}^{3}}+125+135{{x}^{2}}+225x \right)\]
Using, \[{{x}^{m}}.{{x}^{n}}={{x}^{m+n}},\] we get,
\[\begin{align}
& \Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=4\times 27{{x}^{5}}+4\times 125{{x}^{2}}+4\times 135{{x}^{4}}+225\times 4{{x}^{3}}-28\times 27{{x}^{4}}-28\times 125x \\
& -28\times 135{{x}^{3}}-28\times 225{{x}^{2}}+49\,\times 27{{x}^{3}}+49\times 125+49\times 135{{x}^{2}}+49\times 225x \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}+500{{x}^{2}}+540{{x}^{4}}+900{{x}^{3}}-756{{x}^{4}}-3500x-3780{{x}^{3}} \\
& -6300{{x}^{2}}+1323{{x}^{3}}+6125+6615{{x}^{2}}+11025x \\
\end{align}\]
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}-216{{x}^{4}}+815{{x}^{2}}+7525x-1557{{x}^{3}}+6125\]
Therefore, we get
\[\Rightarrow {{\left( 2x-7 \right)}^{2}}{{\left( 3x+5 \right)}^{3}}=108{{x}^{5}}-216{{x}^{4}}-1557{{x}^{3}}+815{{x}^{2}}+7525x+6125\]
Note:
Another way to solve the part \[{{\left( 3x+5 \right)}^{3}}\] can be directed by using \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}.\] We have used the formula \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right).\] Both of the above formulas are the same and hence the answer would be the same. One key point to note here in this question is that while multiplying \[\left( 4{{x}^{2}}-28x+49 \right)\] to \[\left( 27{{x}^{3}}+125+135{{x}^{2}}+225x \right)\] the minus in “– 28” should be taken care of while multiplying.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

