Expand the following algebraic expression by finding the product
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)$.
Answer
362.1k+ views
Hint: Use distributive law for finding the product. According to distributive law, multiplication distributes over addition, i.e. $a\left( b+c \right)=ab+ac$. Let $x={{a}^{2}}+2{{c}^{2}}$, then apply distributive law. Revert to original variables and apply distributive law again to individual expressions. Use ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$ to simplify the expressions.
Complete step-by-step answer:
Let $x={{a}^{2}}+2{{c}^{2}}$, We have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=x\left( 3a-2c \right)$
Applying distributive law, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3ax-2cx$
Reverting to original variables, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3a\left( {{a}^{2}}+2{{c}^{2}} \right)-2c\left( {{a}^{2}}+2{{c}^{2}} \right)$
Applying distributive law on the expression$3a\left( {{a}^{2}}+2{{c}^{2}} \right)$, we get
$3a\left( {{a}^{2}}+2{{c}^{2}} \right)=3a\left( {{a}^{2}} \right)+2{{c}^{2}}\left( 3a \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 3a\left( {{a}^{2}}+2{{c}^{2}} \right)=3{{a}^{1+2}}+6a{{c}^{2}} \\
& =3{{a}^{3}}+6a{{c}^{2}} \\
\end{align}$
Similarly, applying distributive law to the expression $2c\left( {{a}^{2}}+2{{c}^{2}} \right)$, we get
$2c\left( {{a}^{2}}+2{{c}^{2}} \right)=2c{{a}^{2}}+2c\left( 2{{c}^{2}} \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 2c\left( {{a}^{2}}+2{{c}^{2}} \right)=2{{a}^{2}}c+4{{c}^{1+2}} \\
& =2{{a}^{2}}c+4{{c}^{3}} \\
\end{align}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-\left( 2{{a}^{2}}c+4{{c}^{3}} \right)$
Simplifying, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
Note: [1] Although we substituted $x={{a}^{2}}+2{{c}^{2}}$ and then applied distributive law, we also could have substituted $y=3a-2c$ and then applied distributive law and arrived at the same solution.
Let $y=3a-2c$, we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=\left( {{a}^{2}}+2{{c}^{2}} \right)y$
Applying distributive law, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)={{a}^{2}}y+2{{c}^{2}}y$
Reverting to original variables, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)={{a}^{2}}\left( 3a-2c \right)+2{{c}^{2}}\left( 3a-2c \right)$
Applying distributive law in the expression ${{a}^{2}}\left( 3a-2c \right)$, we get
${{a}^{2}}\left( 3a-2c \right)={{a}^{2}}\left( 3a \right)-{{a}^{2}}\left( 2c \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& {{a}^{2}}\left( 3a-2c \right)=3{{a}^{2+1}}-2{{a}^{2}}c \\
& =3{{a}^{3}}-2{{a}^{2}}c \\
\end{align}$
Similarly, applying distributive law in the expression $2{{c}^{2}}\left( 3a-2c \right)$, we get
$2{{c}^{2}}\left( 3a-2c \right)=2{{c}^{2}}\left( 3a \right)-2{{c}^{2}}\left( 2c \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 2{{c}^{2}}\left( 3a-2c \right)=6a{{c}^{2}}-4{{c}^{2+1}} \\
& =6a{{c}^{2}}-4{{c}^{3}} \\
\end{align}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}-2{{a}^{2}}c+6a{{c}^{2}}-4{{c}^{3}}$
Rearranging the terms, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
[2] Along with distributive property multiplication enjoys commutativity and associativity.
Commutative property of multiplication means ab = ba
Associative property of multiplication means a(bc)=(ab)c
Complete step-by-step answer:
Let $x={{a}^{2}}+2{{c}^{2}}$, We have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=x\left( 3a-2c \right)$
Applying distributive law, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3ax-2cx$
Reverting to original variables, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3a\left( {{a}^{2}}+2{{c}^{2}} \right)-2c\left( {{a}^{2}}+2{{c}^{2}} \right)$
Applying distributive law on the expression$3a\left( {{a}^{2}}+2{{c}^{2}} \right)$, we get
$3a\left( {{a}^{2}}+2{{c}^{2}} \right)=3a\left( {{a}^{2}} \right)+2{{c}^{2}}\left( 3a \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 3a\left( {{a}^{2}}+2{{c}^{2}} \right)=3{{a}^{1+2}}+6a{{c}^{2}} \\
& =3{{a}^{3}}+6a{{c}^{2}} \\
\end{align}$
Similarly, applying distributive law to the expression $2c\left( {{a}^{2}}+2{{c}^{2}} \right)$, we get
$2c\left( {{a}^{2}}+2{{c}^{2}} \right)=2c{{a}^{2}}+2c\left( 2{{c}^{2}} \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 2c\left( {{a}^{2}}+2{{c}^{2}} \right)=2{{a}^{2}}c+4{{c}^{1+2}} \\
& =2{{a}^{2}}c+4{{c}^{3}} \\
\end{align}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-\left( 2{{a}^{2}}c+4{{c}^{3}} \right)$
Simplifying, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
Note: [1] Although we substituted $x={{a}^{2}}+2{{c}^{2}}$ and then applied distributive law, we also could have substituted $y=3a-2c$ and then applied distributive law and arrived at the same solution.
Let $y=3a-2c$, we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=\left( {{a}^{2}}+2{{c}^{2}} \right)y$
Applying distributive law, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)={{a}^{2}}y+2{{c}^{2}}y$
Reverting to original variables, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)={{a}^{2}}\left( 3a-2c \right)+2{{c}^{2}}\left( 3a-2c \right)$
Applying distributive law in the expression ${{a}^{2}}\left( 3a-2c \right)$, we get
${{a}^{2}}\left( 3a-2c \right)={{a}^{2}}\left( 3a \right)-{{a}^{2}}\left( 2c \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& {{a}^{2}}\left( 3a-2c \right)=3{{a}^{2+1}}-2{{a}^{2}}c \\
& =3{{a}^{3}}-2{{a}^{2}}c \\
\end{align}$
Similarly, applying distributive law in the expression $2{{c}^{2}}\left( 3a-2c \right)$, we get
$2{{c}^{2}}\left( 3a-2c \right)=2{{c}^{2}}\left( 3a \right)-2{{c}^{2}}\left( 2c \right)$
We know that ${{a}^{m}}{{a}^{n}}={{a}^{m+n}}$.
Applying the above formula, we get
$\begin{align}
& 2{{c}^{2}}\left( 3a-2c \right)=6a{{c}^{2}}-4{{c}^{2+1}} \\
& =6a{{c}^{2}}-4{{c}^{3}} \\
\end{align}$
Hence we have
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}-2{{a}^{2}}c+6a{{c}^{2}}-4{{c}^{3}}$
Rearranging the terms, we get
$\left( {{a}^{2}}+2{{c}^{2}} \right)\left( 3a-2c \right)=3{{a}^{3}}+6a{{c}^{2}}-2{{a}^{2}}c-4{{c}^{3}}$
[2] Along with distributive property multiplication enjoys commutativity and associativity.
Commutative property of multiplication means ab = ba
Associative property of multiplication means a(bc)=(ab)c
Last updated date: 30th Sep 2023
•
Total views: 362.1k
•
Views today: 5.62k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
