
Examine the continuity of the function:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and $f\left( x \right) = \dfrac{{100}}{3},{\text{ for }}x = 0$; at $x = 0$
Answer
516.9k+ views
Hint: A function is continuous at a point when its left hand limit at that point is equal to its right hand limit at the same point which in turn is equal to the value of the function at that same point. Find out the left hand and right hand limit at $x = 0$ and check if they both are equal to $f(0)$ or not.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
