
Examine the continuity of the function:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and $f\left( x \right) = \dfrac{{100}}{3},{\text{ for }}x = 0$; at $x = 0$
Answer
597.6k+ views
Hint: A function is continuous at a point when its left hand limit at that point is equal to its right hand limit at the same point which in turn is equal to the value of the function at that same point. Find out the left hand and right hand limit at $x = 0$ and check if they both are equal to $f(0)$ or not.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Complete step by step answer:
The given function is:
\[f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0\] and \[f\left( x \right) = \dfrac{{100}}{3}{\text{, for }}x \ne 0\]
We know that $\log m + \log n = \log mn$, applying this for $f\left( x \right)$, we’ll get:
\[
\Rightarrow f\left( x \right) = \dfrac{{\log 100 + \log \left( {0.01 + x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\Rightarrow f\left( x \right) = \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}},{\text{ for }}x \ne 0 \\
\]
If we consider left hand limit, we’ll get:
$ \Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$,
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will apply L’ Hospital rule i.e. we’ll differentiate numerator and denominator separately. We’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{L}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
Similarly if we consider right hand limit, we’ll get:
$ \Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\log \left( {1 + 100x} \right)}}{{3x}}$
If we put $x = 0$, we’ll get$\dfrac{0}{0}$ form. So, we will again apply the L' Hospital rule. We’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\dfrac{d}{{dx}}\left( {\log \left( {1 + 100x} \right)} \right)}}{{\dfrac{d}{{dx}}\left( {3x} \right)}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{100}}{{\left( {1 + 100x} \right) \times 3}} \\
\]
Now, putting $x = 0$, we’ll get:
\[
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{{\left( {1 + 100 \times 0} \right) \times 3}}, \\
\Rightarrow {\text{R}}{\text{.H}}{\text{.L = }}\dfrac{{100}}{3} \\
\]
And from the question, it is given that $f\left( 0 \right) = \dfrac{{100}}{3}$.
So, at $x = 0$, we have:
${\text{L}}{\text{.H}}{\text{.L}} = {\text{R}}{\text{.H}}{\text{.L}} = f\left( x \right)$
Therefore, the given function is continuous.
Note: If a function is not continuous at any point then its differentiation will not exist at that point. Because it will also be non-differentiable at that point. Also a function is continuous at points which are in its domain only.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

