
Evaluate:$\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+{{5}^{x}}}}dx.$
Answer
589.8k+ views
Hint:
In the given question we have to find out the value of a definite integration. In order to solve such type of question we have to use the properties of definite integration. Here it is advisable to use the property $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$, in this question we have the value of $a=-2,b=+2$
And the function here given is $f(x)=\dfrac{{{x}^{2}}}{1+{{5}^{x}}}$.
Complete step by step answer:
Let us assume that
$I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+{{5}^{x}}}}dx------(1)$
Now we have to use the property of definite integration $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$, we can write
$I=\int\limits_{-2}^{2}{\dfrac{{{\left( 2-2-x \right)}^{2}}}{1+5\left( ^{2-2-x} \right)}}dx.$
So, we can write the above integration as
$I=\int\limits_{-2}^{2}{\dfrac{{{\left( -x \right)}^{2}}}{1+{{5}^{-x}}}}dx.$
This can be further written as
$\begin{align}
& I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+\dfrac{1}{{{5}^{x}}}}}dx \\
& \Rightarrow I=\int\limits_{-2}^{2}{\dfrac{{{5}^{x}}{{x}^{2}}}{{{5}^{x}}+1}}dx------(2) \\
\end{align}$
Now we have to add $(1)\text{ and }(2)$ we can write
$I+I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+{{5}^{x}}}}dx+\int\limits_{-2}^{2}{\dfrac{{{5}^{x}}{{x}^{2}}}{1+{{5}^{x}}}}dx$
Hence, we can write the above sum of integral as
$2I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}+{{5}^{x}}{{x}^{2}}}{1+{{5}^{x}}}}dx$
In the above step we use the property of definite integration
\[\int\limits_{a}^{b}{f(x)dx+}\int\limits_{a}^{b}{g(x)dx=}\int\limits_{a}^{b}{\left( f(x)+g(x) \right)dx}\]
Now we can take ${{x}^{2}}$as common we can write the above integral as
$2I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}\left( 1+{{5}^{x}} \right)}{1+{{5}^{x}}}}dx$
As we see here $1+{{5}^{x}}$is in numerator as well as denominator, so both cancel each other so we can write further
$2I=\int\limits_{-2}^{2}{{{x}^{2}}}dx$
Now as we know that $\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c$
So, we can write further
$\begin{align}
& 2I={{\left[ \dfrac{{{x}^{2+1}}}{2+1} \right]}^{2}}_{-2} \\
& 2I={{\left[ \dfrac{{{x}^{3}}}{3} \right]}^{2}}_{-2} \\
\end{align}$
Now we have to put the limit and upper limit we can write
\[2I=\left[ \dfrac{{{2}^{3}}}{3}-\dfrac{{{\left( -2 \right)}^{3}}}{3} \right]\]
After simplification we can write
$\begin{align}
& I=\dfrac{1}{2}\left( \dfrac{8}{3}+\dfrac{8}{3} \right) \\
& I=\dfrac{16}{6} \\
& I=\dfrac{8}{3} \\
\end{align}$
Hence the value of given definite integration is$\dfrac{8}{3}$.
Note:
It should be important to note that in case of definite integration we cannot write integration constant as the value of definite integral is unique, for, if
$\int{f(x)dx=F(x)+c}$then we can write
$\int\limits_{a}^{b}{f(x)dx=\left[ F(x)+c \right]}_{a}^{b}$
This can we written further
$\begin{align}
& \int\limits_{a}^{b}{f(x)dx=\left[ F(b)+c-F(a)-c \right]} \\
& \int\limits_{a}^{b}{f(x)dx=\left[ F(b)-F(a) \right]} \\
\end{align}$
Hence, we see here there is no any integration constant exist in definite integration.
Also, when we have to find out the definite integration of a function the function must be continuous.
In the given question we have to find out the value of a definite integration. In order to solve such type of question we have to use the properties of definite integration. Here it is advisable to use the property $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$, in this question we have the value of $a=-2,b=+2$
And the function here given is $f(x)=\dfrac{{{x}^{2}}}{1+{{5}^{x}}}$.
Complete step by step answer:
Let us assume that
$I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+{{5}^{x}}}}dx------(1)$
Now we have to use the property of definite integration $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$, we can write
$I=\int\limits_{-2}^{2}{\dfrac{{{\left( 2-2-x \right)}^{2}}}{1+5\left( ^{2-2-x} \right)}}dx.$
So, we can write the above integration as
$I=\int\limits_{-2}^{2}{\dfrac{{{\left( -x \right)}^{2}}}{1+{{5}^{-x}}}}dx.$
This can be further written as
$\begin{align}
& I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+\dfrac{1}{{{5}^{x}}}}}dx \\
& \Rightarrow I=\int\limits_{-2}^{2}{\dfrac{{{5}^{x}}{{x}^{2}}}{{{5}^{x}}+1}}dx------(2) \\
\end{align}$
Now we have to add $(1)\text{ and }(2)$ we can write
$I+I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}}{1+{{5}^{x}}}}dx+\int\limits_{-2}^{2}{\dfrac{{{5}^{x}}{{x}^{2}}}{1+{{5}^{x}}}}dx$
Hence, we can write the above sum of integral as
$2I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}+{{5}^{x}}{{x}^{2}}}{1+{{5}^{x}}}}dx$
In the above step we use the property of definite integration
\[\int\limits_{a}^{b}{f(x)dx+}\int\limits_{a}^{b}{g(x)dx=}\int\limits_{a}^{b}{\left( f(x)+g(x) \right)dx}\]
Now we can take ${{x}^{2}}$as common we can write the above integral as
$2I=\int\limits_{-2}^{2}{\dfrac{{{x}^{2}}\left( 1+{{5}^{x}} \right)}{1+{{5}^{x}}}}dx$
As we see here $1+{{5}^{x}}$is in numerator as well as denominator, so both cancel each other so we can write further
$2I=\int\limits_{-2}^{2}{{{x}^{2}}}dx$
Now as we know that $\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c$
So, we can write further
$\begin{align}
& 2I={{\left[ \dfrac{{{x}^{2+1}}}{2+1} \right]}^{2}}_{-2} \\
& 2I={{\left[ \dfrac{{{x}^{3}}}{3} \right]}^{2}}_{-2} \\
\end{align}$
Now we have to put the limit and upper limit we can write
\[2I=\left[ \dfrac{{{2}^{3}}}{3}-\dfrac{{{\left( -2 \right)}^{3}}}{3} \right]\]
After simplification we can write
$\begin{align}
& I=\dfrac{1}{2}\left( \dfrac{8}{3}+\dfrac{8}{3} \right) \\
& I=\dfrac{16}{6} \\
& I=\dfrac{8}{3} \\
\end{align}$
Hence the value of given definite integration is$\dfrac{8}{3}$.
Note:
It should be important to note that in case of definite integration we cannot write integration constant as the value of definite integral is unique, for, if
$\int{f(x)dx=F(x)+c}$then we can write
$\int\limits_{a}^{b}{f(x)dx=\left[ F(x)+c \right]}_{a}^{b}$
This can we written further
$\begin{align}
& \int\limits_{a}^{b}{f(x)dx=\left[ F(b)+c-F(a)-c \right]} \\
& \int\limits_{a}^{b}{f(x)dx=\left[ F(b)-F(a) \right]} \\
\end{align}$
Hence, we see here there is no any integration constant exist in definite integration.
Also, when we have to find out the definite integration of a function the function must be continuous.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

