
Evaluate, without using trigonometric tables:
\[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {{{\sec }^2}{{61}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.{{\sec }^2}{{36}^o}}}{{2\left( {\cos e{c^2}{{65}^0} - {{\tan }^2}{{25}^o}} \right)}}\]
Answer
521.7k+ views
Hint: First we have to know the trigonometric functions are real functions which relate an angle of a right-angle triangle to ratios of two side lengths. Then mention their trigonometric ratios. Using the trigonometric identities simplifying the given trigonometric expression.
Complete step by step answer:
Trigonometric functions also called circular functions, angle functions or goniometric functions. sine, cosine, tangent, cosecant, secant and cotangent are six trigonometric ratios. These six trigonometric ratios are abbreviated as \[\sin \], \[\cos \], \[\tan \], \[\csc \], \[\sec \], \[\cot \].
Given \[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {{{\sec }^2}{{61}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.{{\sec }^2}{{36}^o}}}{{2\left( {\cos e{c^2}{{65}^0} - {{\tan }^2}{{25}^o}} \right)}}\]---(1)
We know that \[\sec x = \dfrac{1}{{\cos x}}\]and \[\cos ecx = \dfrac{1}{{\sin x}}\], then the expression (1) becomes
\[ = \]\[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]---(2)
We know that \[\sin \left( {{{90}^o} - \theta } \right) = \cos \theta \] then the expression (2) becomes
\[\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\left( \theta \right)}}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]---(3)
Since \[{\sin ^2}x + {\cos ^2}x = 1\] then the expression (3) becomes
\[\dfrac{1}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]------(4)
We know that \[\sin \left( {{{90}^o} - x} \right) = \cos x\]and \[\cos \left( {{{90}^o} - x} \right) = \sin x\].
Since \[\cos {61^o}\]can be expressed as \[\cos \left( {{{90}^o} - {{29}^o}} \right)\], since \[\cos \left( {{{90}^o} - {{29}^o}} \right) = \sin {29^o}\]then we get \[\cos {61^o} = \sin {29^o}\]. Also, \[\cos {36^o}\]can be expressed as \[\cos \left( {{{90}^o} - {{54}^o}} \right)\], since \[\cos \left( {{{90}^o} - {{54}^o}} \right) = \sin {54^o}\]then we get \[\cos {36^o} = \sin {54^o}\].
Similarly, \[\sin {65^o}\]can be expressed as \[\sin \left( {{{90}^o} - {{25}^o}} \right)\], since \[\sin \left( {{{90}^o} - {{25}^o}} \right) = \cos {25^o}\]then we get
\[\sin {65^o} = \cos {25^o}\].
Using the above formulas then the expression (4) becomes
\[\dfrac{1}{{3\left( {\dfrac{1}{{{{\sin }^2}{{29}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\sin }^2}{{54}^o}}}}}{{2\left( {\dfrac{1}{{{{\cos }^2}{{25}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]-----(5)
Again using \[\dfrac{1}{{\sin x}} = \cos ecx\]and \[\dfrac{1}{{\cos x}} = \sec x\]then the expression (6) becomes
\[\dfrac{1}{{3\left( {\cos e{c^2}{{29}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}}}{{2\left( {{{\sec }^2}{{25}^o} - {{\tan }^2}{{25}^o}} \right)}}\]----(6)
We know that \[{\sec ^2}x - {\tan ^2}x = 1\]and \[\cos e{c^2}x - {\cot ^2}x = 1\], then the expression (6) becomes
\[\dfrac{1}{3} - \dfrac{{3{{\cot }^2}{{30}^o}}}{2}\]-----(7)
Since \[\cot {30^o} = \sqrt 3 \] then the expression (8) becomes
\[\dfrac{1}{3} - \dfrac{9}{2}\]
\[ \Rightarrow \]\[\dfrac{{2 - 27}}{6} = - \dfrac{{25}}{6}\].
Hence \[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {{{\sec }^2}{{61}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.{{\sec }^2}{{36}^o}}}{{2\left( {\cos e{c^2}{{65}^0} - {{\tan }^2}{{25}^o}} \right)}} = - \dfrac{{25}}{6}\].
Note: Note that to convert degree into radian we use the formula \[{1^o} = \dfrac{\pi }{{180}} \times radian\]. Similarly, to convert radian into degree we use the formula \[1\;radian = \dfrac{{180}}{\pi } \times \]degree. In geometry, trigonometric functions are used to find the unknown angle or side of a right-angled triangle.
Complete step by step answer:
Trigonometric functions also called circular functions, angle functions or goniometric functions. sine, cosine, tangent, cosecant, secant and cotangent are six trigonometric ratios. These six trigonometric ratios are abbreviated as \[\sin \], \[\cos \], \[\tan \], \[\csc \], \[\sec \], \[\cot \].
Given \[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {{{\sec }^2}{{61}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.{{\sec }^2}{{36}^o}}}{{2\left( {\cos e{c^2}{{65}^0} - {{\tan }^2}{{25}^o}} \right)}}\]---(1)
We know that \[\sec x = \dfrac{1}{{\cos x}}\]and \[\cos ecx = \dfrac{1}{{\sin x}}\], then the expression (1) becomes
\[ = \]\[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]---(2)
We know that \[\sin \left( {{{90}^o} - \theta } \right) = \cos \theta \] then the expression (2) becomes
\[\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\left( \theta \right)}}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]---(3)
Since \[{\sin ^2}x + {\cos ^2}x = 1\] then the expression (3) becomes
\[\dfrac{1}{{3\left( {\dfrac{1}{{{{\cos }^2}{{61}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\cos }^2}{{36}^o}}}}}{{2\left( {\dfrac{1}{{{{\sin }^2}{{65}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]------(4)
We know that \[\sin \left( {{{90}^o} - x} \right) = \cos x\]and \[\cos \left( {{{90}^o} - x} \right) = \sin x\].
Since \[\cos {61^o}\]can be expressed as \[\cos \left( {{{90}^o} - {{29}^o}} \right)\], since \[\cos \left( {{{90}^o} - {{29}^o}} \right) = \sin {29^o}\]then we get \[\cos {61^o} = \sin {29^o}\]. Also, \[\cos {36^o}\]can be expressed as \[\cos \left( {{{90}^o} - {{54}^o}} \right)\], since \[\cos \left( {{{90}^o} - {{54}^o}} \right) = \sin {54^o}\]then we get \[\cos {36^o} = \sin {54^o}\].
Similarly, \[\sin {65^o}\]can be expressed as \[\sin \left( {{{90}^o} - {{25}^o}} \right)\], since \[\sin \left( {{{90}^o} - {{25}^o}} \right) = \cos {25^o}\]then we get
\[\sin {65^o} = \cos {25^o}\].
Using the above formulas then the expression (4) becomes
\[\dfrac{1}{{3\left( {\dfrac{1}{{{{\sin }^2}{{29}^0}}} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.\dfrac{1}{{{{\sin }^2}{{54}^o}}}}}{{2\left( {\dfrac{1}{{{{\cos }^2}{{25}^o}}} - {{\tan }^2}{{25}^o}} \right)}}\]-----(5)
Again using \[\dfrac{1}{{\sin x}} = \cos ecx\]and \[\dfrac{1}{{\cos x}} = \sec x\]then the expression (6) becomes
\[\dfrac{1}{{3\left( {\cos e{c^2}{{29}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}}}{{2\left( {{{\sec }^2}{{25}^o} - {{\tan }^2}{{25}^o}} \right)}}\]----(6)
We know that \[{\sec ^2}x - {\tan ^2}x = 1\]and \[\cos e{c^2}x - {\cot ^2}x = 1\], then the expression (6) becomes
\[\dfrac{1}{3} - \dfrac{{3{{\cot }^2}{{30}^o}}}{2}\]-----(7)
Since \[\cot {30^o} = \sqrt 3 \] then the expression (8) becomes
\[\dfrac{1}{3} - \dfrac{9}{2}\]
\[ \Rightarrow \]\[\dfrac{{2 - 27}}{6} = - \dfrac{{25}}{6}\].
Hence \[\dfrac{{{{\sin }^2}\theta + {{\sin }^2}\left( {{{90}^o} - \theta } \right)}}{{3\left( {{{\sec }^2}{{61}^0} - {{\cot }^2}{{29}^o}} \right)}} - \dfrac{{3{{\cot }^2}{{30}^o}.{{\sin }^2}{{54}^o}.{{\sec }^2}{{36}^o}}}{{2\left( {\cos e{c^2}{{65}^0} - {{\tan }^2}{{25}^o}} \right)}} = - \dfrac{{25}}{6}\].
Note: Note that to convert degree into radian we use the formula \[{1^o} = \dfrac{\pi }{{180}} \times radian\]. Similarly, to convert radian into degree we use the formula \[1\;radian = \dfrac{{180}}{\pi } \times \]degree. In geometry, trigonometric functions are used to find the unknown angle or side of a right-angled triangle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

