
Evaluate using trigonometric functions: \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}}.......{\tan ^2}\dfrac{{7\pi }}{{16}}\]
Answer
570.9k+ views
Hint: According to the question, Rewrite the values of \[\dfrac{{7\pi }}{{16}}\] , \[\dfrac{{6\pi }}{{16}}\] , \[\dfrac{{5\pi }}{{16}}\] in the given equation. Hence, use the trigonometric formulas and simplify to solve the equation.
Formula used:
Here we use the formula of trigonometric functions that are \[{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x\] , \[2\sin A\cos A = \sin \dfrac{A}{2}\] , \[{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}} = 1\] , \[\left( {1 - \cos 2x} \right) = 2{\sin ^2}x\] .
Complete step-by-step answer:
Let’s start by rewriting the equation \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}}.......{\tan ^2}\dfrac{{7\pi }}{{16}}\] as \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{{4\pi }}{{16}} + {\tan ^2}\dfrac{{5\pi }}{{16}} + {\tan ^2}\dfrac{{6\pi }}{{16}} + {\tan ^2}\dfrac{{7\pi }}{{16}}\] by filling the dots with values.
For simplifying the equation we can simplify each specific part of equation. As we know that \[\dfrac{{7\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{\pi }{{16}}\] , \[\dfrac{{6\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}\] , \[\dfrac{{5\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}}\] and \[\dfrac{{4\pi }}{{16}}\] can be written as \[\dfrac{\pi }{4}\] . \[\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}\]
So, on substituting all the values we get,
\[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{{16}}} \right)\]
And we also know that, \[{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x\] So, using this we will replace tan by cot on all possible positions.
\[ \Rightarrow {\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\cot ^2}\left( {\dfrac{{3\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{{2\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{\pi }{{16}}} \right)\] .
Taking tan and cot with the same degree in brackets for easy solving.
\[ \Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4}\] - Equation 1.
Solving the first bracket by using the formula \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\] .
\[{\tan ^2}\dfrac{\pi }{{16}} + {\cot ^2}\dfrac{\pi }{{16}} = {\left( {\tan \dfrac{\pi }{{16}} + \cot \dfrac{\pi }{{16}}} \right)^2} - 2\tan \dfrac{\pi }{{16}}\cot \dfrac{\pi }{{16}}\] .
Converting tan and cot in terms of sin and cos. So, we get \[ \Rightarrow {\left( {\dfrac{{\sin \dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}}} + \dfrac{{\cos \dfrac{\pi }{{16}}}}{{\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\] .
By Taking the LCM we get \[ \Rightarrow {\left( {\dfrac{{{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\] .
Multiplying numerator and denominator by 2.
\[ \Rightarrow {\left( {\dfrac{{2*\left( {{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}} \right)}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\].
As we know \[{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}}\] is equal to 1.
\[ \Rightarrow {\left( {\dfrac{{2*1}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\]
Using the identity \[2\sin A\cos A = \sin \dfrac{A}{2}\]
So, we get \[{\left( {\dfrac{2}{{\sin \dfrac{\pi }{8}}}} \right)^2} - 2\]
Opening the square,
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}\dfrac{\pi }{8}}} - 2\]
Multiplying numerator and denominator by 2.
\[ \Rightarrow \dfrac{{4*2}}{{2{{\sin }^2}\dfrac{\pi }{8}}} - 2\]
Using the formula \[ \Rightarrow \left( {1 - \cos 2x} \right) = 2{\sin ^2}x\] .
\[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{4}} \right)}} - 2\]
Substituting value of \[\cos \dfrac{\pi }{4}\] .
\[ \Rightarrow \dfrac{8}{{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}} - 2\]
By Taking the LCM we get \[ \Rightarrow \dfrac{{8\sqrt 2 }}{{\left( {\sqrt 2 - 1} \right)}} - 2\].
Rationalising with \[\left( {\sqrt 2 + 1} \right)\] , we get \[ \Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2\].
Similarly after solving 2nd bracket \[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{2}} \right)}} - 2 = 8 - 2 = 6\] and Similarly after solving 3rd bracket \[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{{3\pi }}{4}} \right)}} - 2 = 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2\] .
Thus, Substituting values in equation (1) \[ \Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4}\] .
\[ \Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2 + 6 + 1 + 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2\]
\[ \Rightarrow 16 + 8\sqrt 2 - 2 + 7 + 8\sqrt 2 *\sqrt 2 - 8\sqrt 2 - 2\]
\[ \Rightarrow 35\]
Note: To solve these types of questions, we must remember the trigonometric formulas and algebraic identities to solve it in a simpler way. Hence, simplify all the values by taking L.C.M or rationalising to get the desired result.
Formula used:
Here we use the formula of trigonometric functions that are \[{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x\] , \[2\sin A\cos A = \sin \dfrac{A}{2}\] , \[{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}} = 1\] , \[\left( {1 - \cos 2x} \right) = 2{\sin ^2}x\] .
Complete step-by-step answer:
Let’s start by rewriting the equation \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}}.......{\tan ^2}\dfrac{{7\pi }}{{16}}\] as \[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{{4\pi }}{{16}} + {\tan ^2}\dfrac{{5\pi }}{{16}} + {\tan ^2}\dfrac{{6\pi }}{{16}} + {\tan ^2}\dfrac{{7\pi }}{{16}}\] by filling the dots with values.
For simplifying the equation we can simplify each specific part of equation. As we know that \[\dfrac{{7\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{\pi }{{16}}\] , \[\dfrac{{6\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}\] , \[\dfrac{{5\pi }}{{16}}\] can be written as \[\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}}\] and \[\dfrac{{4\pi }}{{16}}\] can be written as \[\dfrac{\pi }{4}\] . \[\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}\]
So, on substituting all the values we get,
\[{\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{{16}}} \right) + {\tan ^2}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{{16}}} \right)\]
And we also know that, \[{\tan ^2}\left( {\dfrac{\pi }{2} - x} \right) = {\cot ^2}x\] So, using this we will replace tan by cot on all possible positions.
\[ \Rightarrow {\tan ^2}\dfrac{\pi }{{16}} + {\tan ^2}\dfrac{{2\pi }}{{16}} + {\tan ^2}\dfrac{{3\pi }}{{16}} + {\tan ^2}\dfrac{\pi }{4} + {\cot ^2}\left( {\dfrac{{3\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{{2\pi }}{{16}}} \right) + {\cot ^2}\left( {\dfrac{\pi }{{16}}} \right)\] .
Taking tan and cot with the same degree in brackets for easy solving.
\[ \Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4}\] - Equation 1.
Solving the first bracket by using the formula \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\] .
\[{\tan ^2}\dfrac{\pi }{{16}} + {\cot ^2}\dfrac{\pi }{{16}} = {\left( {\tan \dfrac{\pi }{{16}} + \cot \dfrac{\pi }{{16}}} \right)^2} - 2\tan \dfrac{\pi }{{16}}\cot \dfrac{\pi }{{16}}\] .
Converting tan and cot in terms of sin and cos. So, we get \[ \Rightarrow {\left( {\dfrac{{\sin \dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}}} + \dfrac{{\cos \dfrac{\pi }{{16}}}}{{\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\] .
By Taking the LCM we get \[ \Rightarrow {\left( {\dfrac{{{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}}}{{\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\] .
Multiplying numerator and denominator by 2.
\[ \Rightarrow {\left( {\dfrac{{2*\left( {{{\sin }^2}\dfrac{\pi }{{16}} + {{\cos }^2}\dfrac{\pi }{{16}}} \right)}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\].
As we know \[{\sin ^2}\dfrac{\pi }{{16}} + {\cos ^2}\dfrac{\pi }{{16}}\] is equal to 1.
\[ \Rightarrow {\left( {\dfrac{{2*1}}{{2\cos \dfrac{\pi }{{16}}\sin \dfrac{\pi }{{16}}}}} \right)^2} - 2\]
Using the identity \[2\sin A\cos A = \sin \dfrac{A}{2}\]
So, we get \[{\left( {\dfrac{2}{{\sin \dfrac{\pi }{8}}}} \right)^2} - 2\]
Opening the square,
\[ \Rightarrow \dfrac{4}{{{{\sin }^2}\dfrac{\pi }{8}}} - 2\]
Multiplying numerator and denominator by 2.
\[ \Rightarrow \dfrac{{4*2}}{{2{{\sin }^2}\dfrac{\pi }{8}}} - 2\]
Using the formula \[ \Rightarrow \left( {1 - \cos 2x} \right) = 2{\sin ^2}x\] .
\[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{4}} \right)}} - 2\]
Substituting value of \[\cos \dfrac{\pi }{4}\] .
\[ \Rightarrow \dfrac{8}{{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}} - 2\]
By Taking the LCM we get \[ \Rightarrow \dfrac{{8\sqrt 2 }}{{\left( {\sqrt 2 - 1} \right)}} - 2\].
Rationalising with \[\left( {\sqrt 2 + 1} \right)\] , we get \[ \Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2\].
Similarly after solving 2nd bracket \[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{\pi }{2}} \right)}} - 2 = 8 - 2 = 6\] and Similarly after solving 3rd bracket \[ \Rightarrow \dfrac{8}{{\left( {1 - \cos \dfrac{{3\pi }}{4}} \right)}} - 2 = 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2\] .
Thus, Substituting values in equation (1) \[ \Rightarrow \left( {{{\tan }^2}\dfrac{\pi }{{16}} + {{\cot }^2}\dfrac{\pi }{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{2\pi }}{{16}} + {{\cot }^2}\dfrac{{2\pi }}{{16}}} \right) + \left( {{{\tan }^2}\dfrac{{3\pi }}{{16}} + {{\cot }^2}\dfrac{{3\pi }}{{16}}} \right) + {\tan ^2}\dfrac{\pi }{4}\] .
\[ \Rightarrow 8\sqrt 2 \left( {\sqrt 2 + 1} \right) - 2 + 6 + 1 + 8\sqrt 2 \left( {\sqrt 2 - 1} \right) - 2\]
\[ \Rightarrow 16 + 8\sqrt 2 - 2 + 7 + 8\sqrt 2 *\sqrt 2 - 8\sqrt 2 - 2\]
\[ \Rightarrow 35\]
Note: To solve these types of questions, we must remember the trigonometric formulas and algebraic identities to solve it in a simpler way. Hence, simplify all the values by taking L.C.M or rationalising to get the desired result.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

