
Evaluate the value of the following:
\[\dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right)\].
Answer
594.3k+ views
Hint: The angles given here are not standard angles whose values you already know. First try to convert these angles into standard angles by subtracting or adding some angle from \[{90^0}\]. Then simplify the equation given and then proceed.
Complete step by step answer:
Let \[S = \dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right)\]
We know that \[\tan {50^0} = \cot \left( {{{90}^0} - {{50}^0}} \right)\], \[\cos {72^0} = \sin \left( {{{90}^0} - {{72}^0}} \right)\] and \[\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right)\]By using these formulae, we can rewrite the equation as
\[
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin \left( {{{90}^0} - {{72}^0}} \right)}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\cot \left( {{{90}^0} - {{50}^0}} \right)\cot \left( {{{90}^0} - {{80}^0}} \right)} \right) \\
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\cot {{40}^0}\cot {{10}^0}} \right) \\
\]
We know that, \[\cot {40^0} = \dfrac{1}{{\tan {{40}^0}}}\] and \[\cot {10^0} = \dfrac{1}{{\tan {{10}^0}}}\]. By substituting these values, we get
\[ \Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\dfrac{1}{{\cot {{40}^0}}}\dfrac{1}{{\cot {{10}^0}}}} \right)\]
Cancelling the common terms, we have
\[
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{30}^0}} \right) \\
\Rightarrow S = 1 + \sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}} \right){\text{ }}\left[ {\because \tan {{30}^0} = \dfrac{1}{{\sqrt 3 }}} \right] \\
\Rightarrow S = 1 + 1 \\
\therefore \dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right) = 2 \\
\]
Thus, the value of \[\dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right)\] is equal to 2.
Note: To solve these types of questions, use the formulae and conversions of trigonometric ratios except the known standard values. Try to cancel the terms so that we can reach our solution easily. Always remember the formulae in trigonometry to solve these kinds of problems.
Complete step by step answer:
Let \[S = \dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right)\]
We know that \[\tan {50^0} = \cot \left( {{{90}^0} - {{50}^0}} \right)\], \[\cos {72^0} = \sin \left( {{{90}^0} - {{72}^0}} \right)\] and \[\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right)\]By using these formulae, we can rewrite the equation as
\[
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin \left( {{{90}^0} - {{72}^0}} \right)}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\cot \left( {{{90}^0} - {{50}^0}} \right)\cot \left( {{{90}^0} - {{80}^0}} \right)} \right) \\
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\cot {{40}^0}\cot {{10}^0}} \right) \\
\]
We know that, \[\cot {40^0} = \dfrac{1}{{\tan {{40}^0}}}\] and \[\cot {10^0} = \dfrac{1}{{\tan {{10}^0}}}\]. By substituting these values, we get
\[ \Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\dfrac{1}{{\cot {{40}^0}}}\dfrac{1}{{\cot {{10}^0}}}} \right)\]
Cancelling the common terms, we have
\[
\Rightarrow S = \dfrac{{\sin {{18}^0}}}{{\sin {{18}^0}}} + \sqrt 3 \left( {\tan {{30}^0}} \right) \\
\Rightarrow S = 1 + \sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}} \right){\text{ }}\left[ {\because \tan {{30}^0} = \dfrac{1}{{\sqrt 3 }}} \right] \\
\Rightarrow S = 1 + 1 \\
\therefore \dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right) = 2 \\
\]
Thus, the value of \[\dfrac{{\sin {{18}^0}}}{{\cos {{72}^0}}} + \sqrt 3 \left( {\tan {{10}^0}\tan {{40}^0}\tan {{30}^0}\tan {{50}^0}\tan {{80}^0}} \right)\] is equal to 2.
Note: To solve these types of questions, use the formulae and conversions of trigonometric ratios except the known standard values. Try to cancel the terms so that we can reach our solution easily. Always remember the formulae in trigonometry to solve these kinds of problems.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

