
Evaluate the value of $\sin 45^\circ + \cos 45^\circ $ .
Answer
579.6k+ views
Hint:
Here, it is asked to find the value of $\sin 45^\circ + \cos 45^\circ $.
So, firstly, find the values of $\sin 45^\circ $ and $\cos 45^\circ $.
Thus, on obtaining the values of $\sin 45^\circ $ and $\cos 45^\circ $ , substitute the values in the given equation.
Hence, the required answer is obtained.
Complete step by step solution:
Here, we are asked to find the value of $\sin 45^\circ + \cos 45^\circ $ .
To do so, we firstly need the values of $\sin 45^\circ $ and $\cos 45^\circ $ .
We know that, $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ .
Now, substituting $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ in the given trigonometric equation.
$\therefore \sin 45^\circ + \cos 45^\circ = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}$
$
= \dfrac{{1 + 1}}{{\sqrt 2 }} \\
= \dfrac{2}{{\sqrt 2 }} \\
= \sqrt 2
$
Thus, we get the value of $\sin 45^\circ + \cos 45^\circ $ as $\sqrt 2 $.
Note:
Some useful values to be remembered:
Here, it is asked to find the value of $\sin 45^\circ + \cos 45^\circ $.
So, firstly, find the values of $\sin 45^\circ $ and $\cos 45^\circ $.
Thus, on obtaining the values of $\sin 45^\circ $ and $\cos 45^\circ $ , substitute the values in the given equation.
Hence, the required answer is obtained.
Complete step by step solution:
Here, we are asked to find the value of $\sin 45^\circ + \cos 45^\circ $ .
To do so, we firstly need the values of $\sin 45^\circ $ and $\cos 45^\circ $ .
We know that, $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ .
Now, substituting $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ in the given trigonometric equation.
$\therefore \sin 45^\circ + \cos 45^\circ = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}$
$
= \dfrac{{1 + 1}}{{\sqrt 2 }} \\
= \dfrac{2}{{\sqrt 2 }} \\
= \sqrt 2
$
Thus, we get the value of $\sin 45^\circ + \cos 45^\circ $ as $\sqrt 2 $.
Note:
Some useful values to be remembered:
| $0^\circ $ | $30^\circ $ | $45^\circ $ | $60^\circ $ | $90^\circ $ | |
| $\sin \theta $ | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| $\cos \theta $ | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| $\tan \theta $ | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | \[\sqrt 3 \] | Not defined |
| $\operatorname{cosec} \theta $ | Not defined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| $\sec \theta $ | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Not defined |
| $\cot \theta $ | Not defined | \[\sqrt 3 \] | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

