Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Evaluate the value of $\sin 45^\circ + \cos 45^\circ $ .

Answer
VerifiedVerified
579.6k+ views
Hint:
Here, it is asked to find the value of $\sin 45^\circ + \cos 45^\circ $.
So, firstly, find the values of $\sin 45^\circ $ and $\cos 45^\circ $.
Thus, on obtaining the values of $\sin 45^\circ $ and $\cos 45^\circ $ , substitute the values in the given equation.
Hence, the required answer is obtained.

Complete step by step solution:
Here, we are asked to find the value of $\sin 45^\circ + \cos 45^\circ $ .
To do so, we firstly need the values of $\sin 45^\circ $ and $\cos 45^\circ $ .
We know that, $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ .
Now, substituting $\sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$ and $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$ in the given trigonometric equation.
 $\therefore \sin 45^\circ + \cos 45^\circ = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}$
$
   = \dfrac{{1 + 1}}{{\sqrt 2 }} \\
   = \dfrac{2}{{\sqrt 2 }} \\
   = \sqrt 2
$

Thus, we get the value of $\sin 45^\circ + \cos 45^\circ $ as $\sqrt 2 $.

Note:
Some useful values to be remembered:
$0^\circ $$30^\circ $$45^\circ $$60^\circ $$90^\circ $
$\sin \theta $0$\dfrac{1}{2}$$\dfrac{1}{{\sqrt 2 }}$$\dfrac{{\sqrt 3 }}{2}$1
$\cos \theta $1$\dfrac{{\sqrt 3 }}{2}$$\dfrac{1}{{\sqrt 2 }}$$\dfrac{1}{2}$0
$\tan \theta $0$\dfrac{1}{{\sqrt 3 }}$1\[\sqrt 3 \]Not defined
$\operatorname{cosec} \theta $Not defined2$\sqrt 2 $$\dfrac{2}{{\sqrt 3 }}$1
$\sec \theta $1$\dfrac{2}{{\sqrt 3 }}$$\sqrt 2 $2Not defined
$\cot \theta $Not defined\[\sqrt 3 \]1$\dfrac{1}{{\sqrt 3 }}$0