
Evaluate the value of $\int {{{\sin }^5}xdx} $.
Answer
579.6k+ views
Hint:
Here, we are asked to find the value of $\int {{{\sin }^5}xdx} $.
Let $I = \int {{{\sin }^5}xdx} $ and write ${\sin ^5}x$ as ${\sin ^4}x \times \sin x$.
Then, ${\sin ^4}x$ can be written as ${\left( {{{\sin }^2}x} \right)^2}$ and ${\sin ^2}x = 1 - {\cos ^2}x$.
Thus, solve the question further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of $\int {{{\sin }^5}xdx} $ .
Let $I = \int {{{\sin }^5}xdx} $ .
Now, we can write ${\sin ^5}x$ as ${\sin ^4}x \times \sin x$ .
$\therefore I = \int {{{\sin }^4}x \times \sin xdx} $
Also, ${\sin ^4}x$ can be written as ${\left( {{{\sin }^2}x} \right)^2}$ .
$\therefore I = \int {{{\left( {{{\sin }^2}x} \right)}^2}\sin xdx} $
Applying the property ${\sin ^2}x = 1 - {\cos ^2}x$ in the above value of I.
$\therefore I = \int {{{\left( {1 - {{\cos }^2}x} \right)}^2}\sin xdx} $
Now, to solve further, let $\cos x = t$
$
\therefore - \sin xdx = dt \\
\therefore \sin xdx = - dt \\
$
$
\therefore I = - \int {{{\left( {1 - {t^2}} \right)}^2}dt} \\
\therefore I = - \int {\left( {1 - 2{t^2} + {t^4}} \right)dt} \\
\therefore I = - \int {dt} + 2\int {{t^2}dt} - \int {{t^4}dt} \\
\therefore I = - t + 2\dfrac{{{t^3}}}{3} - \dfrac{{{t^5}}}{5} + C \\
\therefore I = - \dfrac{{{t^5}}}{5} - \dfrac{{2{t^3}}}{3} - t + C \\
$
Now, returning back the value of t as $\cos x$ .
\[\therefore I = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C\]
Thus, $\int {{{\sin }^5}xdx} = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C$.
Note:
Some properties of definite integration:
1) $\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {a + b - f\left( x \right)} \right)dx} } $
2) $\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^{ - a} {f\left( x \right)dx} $
3) $\int\limits_a^b {kxdx = } k\int\limits_a^b {xdx} $
4) $\int\limits_a^a {f\left( x \right)dx = } 0$
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $
Here, we are asked to find the value of $\int {{{\sin }^5}xdx} $.
Let $I = \int {{{\sin }^5}xdx} $ and write ${\sin ^5}x$ as ${\sin ^4}x \times \sin x$.
Then, ${\sin ^4}x$ can be written as ${\left( {{{\sin }^2}x} \right)^2}$ and ${\sin ^2}x = 1 - {\cos ^2}x$.
Thus, solve the question further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of $\int {{{\sin }^5}xdx} $ .
Let $I = \int {{{\sin }^5}xdx} $ .
Now, we can write ${\sin ^5}x$ as ${\sin ^4}x \times \sin x$ .
$\therefore I = \int {{{\sin }^4}x \times \sin xdx} $
Also, ${\sin ^4}x$ can be written as ${\left( {{{\sin }^2}x} \right)^2}$ .
$\therefore I = \int {{{\left( {{{\sin }^2}x} \right)}^2}\sin xdx} $
Applying the property ${\sin ^2}x = 1 - {\cos ^2}x$ in the above value of I.
$\therefore I = \int {{{\left( {1 - {{\cos }^2}x} \right)}^2}\sin xdx} $
Now, to solve further, let $\cos x = t$
$
\therefore - \sin xdx = dt \\
\therefore \sin xdx = - dt \\
$
$
\therefore I = - \int {{{\left( {1 - {t^2}} \right)}^2}dt} \\
\therefore I = - \int {\left( {1 - 2{t^2} + {t^4}} \right)dt} \\
\therefore I = - \int {dt} + 2\int {{t^2}dt} - \int {{t^4}dt} \\
\therefore I = - t + 2\dfrac{{{t^3}}}{3} - \dfrac{{{t^5}}}{5} + C \\
\therefore I = - \dfrac{{{t^5}}}{5} - \dfrac{{2{t^3}}}{3} - t + C \\
$
Now, returning back the value of t as $\cos x$ .
\[\therefore I = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C\]
Thus, $\int {{{\sin }^5}xdx} = - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{2{{\cos }^3}x}}{3} - \cos x + C$.
Note:
Some properties of definite integration:
1) $\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {a + b - f\left( x \right)} \right)dx} } $
2) $\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^{ - a} {f\left( x \right)dx} $
3) $\int\limits_a^b {kxdx = } k\int\limits_a^b {xdx} $
4) $\int\limits_a^a {f\left( x \right)dx = } 0$
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

