
Evaluate the value of $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ .
Answer
567.6k+ views
Hint: Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ .
Now, use the property $\sin x = \cos \left( {90^\circ - x} \right)$ and find the value of \[\sin 18^\circ \] in the terms of cosine function.
Thus, to get the required answer, substitute the value of \[\sin 18^\circ \] in terms of cosine function in the given trigonometric equation.
Complete step-by-step answer:
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ .
We know the property that, $\sin x$ can also be written as $\cos \left( {90^\circ - x} \right)$ i.e. $\sin x = \cos \left( {90^\circ - x} \right)$ .
So, using the above property, we can write $\sin 18^\circ $ as $\cos \left( {90^\circ - 18^\circ } \right)$
$\therefore \sin 18^\circ = \cos \left( {90^\circ - 18^\circ } \right) = \cos 72^\circ $ .
Now, we will substitute the value of $\sin 18^\circ $ as $\cos 72^\circ $ in the given trigonometric fraction.
$\therefore \dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} = \dfrac{{\cos 72^\circ }}{{\cos 72^\circ }} = 1$
Thus, we get the required value of the given trigonometric fraction $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ as 1.
Note: Alternatively, we can also write $\cos 72^\circ $ in the terms of sine function by using the property $\cos y = \cos \left( {90^\circ - y} \right)$ . Thus, by substituting the value of $\cos 72^\circ $ in terms of sine function in the given trigonometric fraction, we get the required answer.
Some angle properties of trigonometric functions:
(i) $\sin x = \cos \left( {90^\circ - x} \right)$
(ii) $\cos x = \sin \left( {90^\circ - x} \right)$
(iii) $\tan x = \cot \left( {90^\circ - x} \right)$
(iv) $\sin x = \sin \left( {360^\circ + x} \right)$
(v) $\cos x = \cos \left( {360^\circ + x} \right)$
(vi) $\tan x = \tan \left( {360^\circ + x} \right)$
Now, use the property $\sin x = \cos \left( {90^\circ - x} \right)$ and find the value of \[\sin 18^\circ \] in the terms of cosine function.
Thus, to get the required answer, substitute the value of \[\sin 18^\circ \] in terms of cosine function in the given trigonometric equation.
Complete step-by-step answer:
Here, we are asked to find the value of the trigonometric fraction $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ .
We know the property that, $\sin x$ can also be written as $\cos \left( {90^\circ - x} \right)$ i.e. $\sin x = \cos \left( {90^\circ - x} \right)$ .
So, using the above property, we can write $\sin 18^\circ $ as $\cos \left( {90^\circ - 18^\circ } \right)$
$\therefore \sin 18^\circ = \cos \left( {90^\circ - 18^\circ } \right) = \cos 72^\circ $ .
Now, we will substitute the value of $\sin 18^\circ $ as $\cos 72^\circ $ in the given trigonometric fraction.
$\therefore \dfrac{{\sin 18^\circ }}{{\cos 72^\circ }} = \dfrac{{\cos 72^\circ }}{{\cos 72^\circ }} = 1$
Thus, we get the required value of the given trigonometric fraction $\dfrac{{\sin 18^\circ }}{{\cos 72^\circ }}$ as 1.
Note: Alternatively, we can also write $\cos 72^\circ $ in the terms of sine function by using the property $\cos y = \cos \left( {90^\circ - y} \right)$ . Thus, by substituting the value of $\cos 72^\circ $ in terms of sine function in the given trigonometric fraction, we get the required answer.
Some angle properties of trigonometric functions:
(i) $\sin x = \cos \left( {90^\circ - x} \right)$
(ii) $\cos x = \sin \left( {90^\circ - x} \right)$
(iii) $\tan x = \cot \left( {90^\circ - x} \right)$
(iv) $\sin x = \sin \left( {360^\circ + x} \right)$
(v) $\cos x = \cos \left( {360^\circ + x} \right)$
(vi) $\tan x = \tan \left( {360^\circ + x} \right)$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

