
Evaluate the limit, $\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$.
$\begin{align}
& \text{A) }\dfrac{1}{\sqrt{2}} \\
& \text{B) }\sqrt{3} \\
& \text{C) }\dfrac{1}{2\sqrt{2}} \\
& \text{D) }\dfrac{\sqrt{3}}{\sqrt{2}} \\
\end{align}$
Answer
589.2k+ views
Hint: In this problem we will find the limit by using L’Hospital Rule as the give function whose limit which have to find is in indeterminate form:
Indeterminate form: let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0, then the ratio $\dfrac{\text{f(x)}}{\text{g(x)}}$ is said to assume the indeterminate form $\dfrac{0}{0}$ at x = a.
There are seven indeterminate form $\dfrac{0}{0},\text{ }\dfrac{\infty }{\infty },\text{ 0}\times \infty ,\text{ }\infty -\infty \text{, }{{\text{0}}^{0}},\text{ }{{\infty }^{0}}\text{ and }{{\text{1}}^{\infty }}.$
Complete step-by-step solution:
L’Hospital Rule: If the function in the indeterminate form then we differentiate the numerator and denominator separately the take limit of numerator and denominator separately if it reduces to indeterminate form then apply the L’Hospital rule again till the limit is obtained.
Let$\text{f(x)}=\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$. then
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}.....(1)$
Since f(x) has indeterminate form $\dfrac{0}{0}$ at x = 3.
Applying L’hospital rule to equation (1), we get
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\dfrac{3}{\sqrt{3x}}}{\dfrac{2}{\sqrt{2x-4}}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{\dfrac{3}{\sqrt{3\times 3}}}{\dfrac{2}{\sqrt{2\times 3-4}}}=\dfrac{\dfrac{3}{\sqrt{9}}}{\dfrac{2}{\sqrt{6-4}}}=\dfrac{\dfrac{3}{3}}{\dfrac{2}{\sqrt{2}}}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}$
Note: In this problem, one should know which function is in indeterminate form and when it is conform that the function is in indeterminate form the use the L’Hospital .
Some of the basic rules of derivative are given below:
If f and g are the two function then
1) Sum rule:
$\dfrac{d}{dx}\left( \text{f+g} \right)=\dfrac{d\text{f}}{dx}+\dfrac{d\text{g}}{dx}$.
2) Product rule:
$\dfrac{d}{dx}\left( \text{f}\cdot \text{g} \right)=\text{g}\dfrac{d\text{f}}{dx}+\text{f}\dfrac{d\text{g}}{dx}$
3) Quotient rule:
$\dfrac{d}{dx}\left( \dfrac{\text{f}}{\text{g}} \right)=\dfrac{\text{g}\dfrac{d\text{f}}{dx}-\text{f}\dfrac{d\text{g}}{dx}}{{{\text{g}}^{\text{2}}}}$
Indeterminate form: let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0, then the ratio $\dfrac{\text{f(x)}}{\text{g(x)}}$ is said to assume the indeterminate form $\dfrac{0}{0}$ at x = a.
There are seven indeterminate form $\dfrac{0}{0},\text{ }\dfrac{\infty }{\infty },\text{ 0}\times \infty ,\text{ }\infty -\infty \text{, }{{\text{0}}^{0}},\text{ }{{\infty }^{0}}\text{ and }{{\text{1}}^{\infty }}.$
Complete step-by-step solution:
L’Hospital Rule: If the function in the indeterminate form then we differentiate the numerator and denominator separately the take limit of numerator and denominator separately if it reduces to indeterminate form then apply the L’Hospital rule again till the limit is obtained.
Let$\text{f(x)}=\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$. then
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}.....(1)$
Since f(x) has indeterminate form $\dfrac{0}{0}$ at x = 3.
Applying L’hospital rule to equation (1), we get
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\dfrac{3}{\sqrt{3x}}}{\dfrac{2}{\sqrt{2x-4}}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{\dfrac{3}{\sqrt{3\times 3}}}{\dfrac{2}{\sqrt{2\times 3-4}}}=\dfrac{\dfrac{3}{\sqrt{9}}}{\dfrac{2}{\sqrt{6-4}}}=\dfrac{\dfrac{3}{3}}{\dfrac{2}{\sqrt{2}}}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}$
Note: In this problem, one should know which function is in indeterminate form and when it is conform that the function is in indeterminate form the use the L’Hospital .
Some of the basic rules of derivative are given below:
If f and g are the two function then
1) Sum rule:
$\dfrac{d}{dx}\left( \text{f+g} \right)=\dfrac{d\text{f}}{dx}+\dfrac{d\text{g}}{dx}$.
2) Product rule:
$\dfrac{d}{dx}\left( \text{f}\cdot \text{g} \right)=\text{g}\dfrac{d\text{f}}{dx}+\text{f}\dfrac{d\text{g}}{dx}$
3) Quotient rule:
$\dfrac{d}{dx}\left( \dfrac{\text{f}}{\text{g}} \right)=\dfrac{\text{g}\dfrac{d\text{f}}{dx}-\text{f}\dfrac{d\text{g}}{dx}}{{{\text{g}}^{\text{2}}}}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

