
Evaluate the limit, $\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$.
$\begin{align}
& \text{A) }\dfrac{1}{\sqrt{2}} \\
& \text{B) }\sqrt{3} \\
& \text{C) }\dfrac{1}{2\sqrt{2}} \\
& \text{D) }\dfrac{\sqrt{3}}{\sqrt{2}} \\
\end{align}$
Answer
508.5k+ views
Hint: In this problem we will find the limit by using L’Hospital Rule as the give function whose limit which have to find is in indeterminate form:
Indeterminate form: let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0, then the ratio $\dfrac{\text{f(x)}}{\text{g(x)}}$ is said to assume the indeterminate form $\dfrac{0}{0}$ at x = a.
There are seven indeterminate form $\dfrac{0}{0},\text{ }\dfrac{\infty }{\infty },\text{ 0}\times \infty ,\text{ }\infty -\infty \text{, }{{\text{0}}^{0}},\text{ }{{\infty }^{0}}\text{ and }{{\text{1}}^{\infty }}.$
Complete step-by-step solution:
L’Hospital Rule: If the function in the indeterminate form then we differentiate the numerator and denominator separately the take limit of numerator and denominator separately if it reduces to indeterminate form then apply the L’Hospital rule again till the limit is obtained.
Let$\text{f(x)}=\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$. then
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}.....(1)$
Since f(x) has indeterminate form $\dfrac{0}{0}$ at x = 3.
Applying L’hospital rule to equation (1), we get
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\dfrac{3}{\sqrt{3x}}}{\dfrac{2}{\sqrt{2x-4}}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{\dfrac{3}{\sqrt{3\times 3}}}{\dfrac{2}{\sqrt{2\times 3-4}}}=\dfrac{\dfrac{3}{\sqrt{9}}}{\dfrac{2}{\sqrt{6-4}}}=\dfrac{\dfrac{3}{3}}{\dfrac{2}{\sqrt{2}}}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}$
Note: In this problem, one should know which function is in indeterminate form and when it is conform that the function is in indeterminate form the use the L’Hospital .
Some of the basic rules of derivative are given below:
If f and g are the two function then
1) Sum rule:
$\dfrac{d}{dx}\left( \text{f+g} \right)=\dfrac{d\text{f}}{dx}+\dfrac{d\text{g}}{dx}$.
2) Product rule:
$\dfrac{d}{dx}\left( \text{f}\cdot \text{g} \right)=\text{g}\dfrac{d\text{f}}{dx}+\text{f}\dfrac{d\text{g}}{dx}$
3) Quotient rule:
$\dfrac{d}{dx}\left( \dfrac{\text{f}}{\text{g}} \right)=\dfrac{\text{g}\dfrac{d\text{f}}{dx}-\text{f}\dfrac{d\text{g}}{dx}}{{{\text{g}}^{\text{2}}}}$
Indeterminate form: let f(x) and g(x) be any two function of x such that f(a) = 0 and g(a) = 0, then the ratio $\dfrac{\text{f(x)}}{\text{g(x)}}$ is said to assume the indeterminate form $\dfrac{0}{0}$ at x = a.
There are seven indeterminate form $\dfrac{0}{0},\text{ }\dfrac{\infty }{\infty },\text{ 0}\times \infty ,\text{ }\infty -\infty \text{, }{{\text{0}}^{0}},\text{ }{{\infty }^{0}}\text{ and }{{\text{1}}^{\infty }}.$
Complete step-by-step solution:
L’Hospital Rule: If the function in the indeterminate form then we differentiate the numerator and denominator separately the take limit of numerator and denominator separately if it reduces to indeterminate form then apply the L’Hospital rule again till the limit is obtained.
Let$\text{f(x)}=\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$. then
$\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}.....(1)$
Since f(x) has indeterminate form $\dfrac{0}{0}$ at x = 3.
Applying L’hospital rule to equation (1), we get
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\dfrac{3}{\sqrt{3x}}}{\dfrac{2}{\sqrt{2x-4}}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{\dfrac{3}{\sqrt{3\times 3}}}{\dfrac{2}{\sqrt{2\times 3-4}}}=\dfrac{\dfrac{3}{\sqrt{9}}}{\dfrac{2}{\sqrt{6-4}}}=\dfrac{\dfrac{3}{3}}{\dfrac{2}{\sqrt{2}}}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\text{f(x)}=\dfrac{1}{\sqrt{2}}$
$\Rightarrow\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}$
Note: In this problem, one should know which function is in indeterminate form and when it is conform that the function is in indeterminate form the use the L’Hospital .
Some of the basic rules of derivative are given below:
If f and g are the two function then
1) Sum rule:
$\dfrac{d}{dx}\left( \text{f+g} \right)=\dfrac{d\text{f}}{dx}+\dfrac{d\text{g}}{dx}$.
2) Product rule:
$\dfrac{d}{dx}\left( \text{f}\cdot \text{g} \right)=\text{g}\dfrac{d\text{f}}{dx}+\text{f}\dfrac{d\text{g}}{dx}$
3) Quotient rule:
$\dfrac{d}{dx}\left( \dfrac{\text{f}}{\text{g}} \right)=\dfrac{\text{g}\dfrac{d\text{f}}{dx}-\text{f}\dfrac{d\text{g}}{dx}}{{{\text{g}}^{\text{2}}}}$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
