Answer

Verified

457.8k+ views

Hint: Try to convert the sum into integral using the idea that integral is a limit of a sum.

We can see that the \[{{k}^{th}}\] term of the limit can be written as\[\dfrac{\sqrt{n}}{\sqrt{k}{{(3\sqrt{k}+4\sqrt{n})}^{2}}}\]

Therefore,

\[\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\sqrt{n}}{{{(3+4\sqrt{n})}^{2}}}+\dfrac{\sqrt{n}}{\sqrt{2}{{(3\sqrt{2}+4\sqrt{n})}^{2}}}+\dfrac{\sqrt{n}}{\sqrt{3}{{(3\sqrt{3}+4\sqrt{n})}^{2}}}....+\dfrac{1}{49n} \right]\]

=\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{\sqrt{n}}{\sqrt{k}{{(3\sqrt{k}+4\sqrt{n})}^{2}}}}\]

The limits of the summation can be found by equating the \[{{k}^{th}}\] term to the first term (for the lower limit) and to the last term (for the upper limit), which in our case are \[k=1\] and \[k=n\].

Dividing by \[\dfrac{1}{\sqrt{n}}\] from both numerator and denominator we rewrite our equation as,

= \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}\dfrac{1}{\sqrt{\dfrac{k}{n}}{{\left( 3\sqrt{\dfrac{k}{n}}+4 \right)}^{2}}}}\]

This limit can now be replaced by an integral as \[\dfrac{1}{n}=dx\] and \[\dfrac{k}{n}=x\].

The upper and lower limits of the integral can be found by evaluating the limit of \[\dfrac{k}{n}\]as \[k\] tends to upper and lower bounds of our summation, which in our case are \[0\] (as lower bound) and \[1\] as upper bound. Every limit of the form

\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=an}^{bn}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}\] can be converted to the integral \[\int\limits_{a}^{b}{f(x)}dx\].

So,

= \[\int\limits_{0}^{1}{\dfrac{1}{\sqrt{x}{{\left( 3\sqrt{x}+4 \right)}^{2}}}}dx\]

For evaluating this integral substitute\[t=\sqrt{x}\]. So \[dt=\dfrac{1}{2\sqrt{x}}dx\].Upper bound becomes \[1\] and lower bound becomes \[0\] (these remain the same in our case as the substitution was \[t=\sqrt{x}\], but may change if it would have been something else)

= \[\int\limits_{0}^{1}{\dfrac{2}{{{\left( 3t+4 \right)}^{2}}}}dt\]

= \[\left[ \dfrac{-2}{3\left( 3t+4 \right)} \right]_{0}^{1}\]

= \[\left( \dfrac{-2}{21} \right)-\left( \dfrac{-2}{12} \right)\]

=\[\dfrac{1}{14}\]

Note: Students have to be careful when writing the \[{{k}^{th}}\] term of the summation and its limits. Also, when converting the limit to the integral one should be careful. Students can use their own methods i.e. any other substitution when solving the integral. They may use either the lower Reimann sum or the upper Reimann sum, in both cases the answer will be the same.

We can see that the \[{{k}^{th}}\] term of the limit can be written as\[\dfrac{\sqrt{n}}{\sqrt{k}{{(3\sqrt{k}+4\sqrt{n})}^{2}}}\]

Therefore,

\[\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\sqrt{n}}{{{(3+4\sqrt{n})}^{2}}}+\dfrac{\sqrt{n}}{\sqrt{2}{{(3\sqrt{2}+4\sqrt{n})}^{2}}}+\dfrac{\sqrt{n}}{\sqrt{3}{{(3\sqrt{3}+4\sqrt{n})}^{2}}}....+\dfrac{1}{49n} \right]\]

=\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{\sqrt{n}}{\sqrt{k}{{(3\sqrt{k}+4\sqrt{n})}^{2}}}}\]

The limits of the summation can be found by equating the \[{{k}^{th}}\] term to the first term (for the lower limit) and to the last term (for the upper limit), which in our case are \[k=1\] and \[k=n\].

Dividing by \[\dfrac{1}{\sqrt{n}}\] from both numerator and denominator we rewrite our equation as,

= \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}\dfrac{1}{\sqrt{\dfrac{k}{n}}{{\left( 3\sqrt{\dfrac{k}{n}}+4 \right)}^{2}}}}\]

This limit can now be replaced by an integral as \[\dfrac{1}{n}=dx\] and \[\dfrac{k}{n}=x\].

The upper and lower limits of the integral can be found by evaluating the limit of \[\dfrac{k}{n}\]as \[k\] tends to upper and lower bounds of our summation, which in our case are \[0\] (as lower bound) and \[1\] as upper bound. Every limit of the form

\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=an}^{bn}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}\] can be converted to the integral \[\int\limits_{a}^{b}{f(x)}dx\].

So,

= \[\int\limits_{0}^{1}{\dfrac{1}{\sqrt{x}{{\left( 3\sqrt{x}+4 \right)}^{2}}}}dx\]

For evaluating this integral substitute\[t=\sqrt{x}\]. So \[dt=\dfrac{1}{2\sqrt{x}}dx\].Upper bound becomes \[1\] and lower bound becomes \[0\] (these remain the same in our case as the substitution was \[t=\sqrt{x}\], but may change if it would have been something else)

= \[\int\limits_{0}^{1}{\dfrac{2}{{{\left( 3t+4 \right)}^{2}}}}dt\]

= \[\left[ \dfrac{-2}{3\left( 3t+4 \right)} \right]_{0}^{1}\]

= \[\left( \dfrac{-2}{21} \right)-\left( \dfrac{-2}{12} \right)\]

=\[\dfrac{1}{14}\]

Note: Students have to be careful when writing the \[{{k}^{th}}\] term of the summation and its limits. Also, when converting the limit to the integral one should be careful. Students can use their own methods i.e. any other substitution when solving the integral. They may use either the lower Reimann sum or the upper Reimann sum, in both cases the answer will be the same.

Recently Updated Pages

What number is 20 of 400 class 8 maths CBSE

Which one of the following numbers is completely divisible class 8 maths CBSE

What number is 78 of 50 A 32 B 35 C 36 D 39 E 41 class 8 maths CBSE

How many integers are there between 10 and 2 and how class 8 maths CBSE

The 3 is what percent of 12 class 8 maths CBSE

Find the circumference of the circle having radius class 8 maths CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

In 1946 the Interim Government was formed under a Sardar class 11 sst CBSE

Change the following sentences into negative and interrogative class 10 english CBSE