
How do you evaluate the limit $\dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8}$ as x approaches 4?
Answer
548.1k+ views
Hint: We are going to take the help of the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ to find the respective values of x in each of the equations ${{x}^{2}}-5x+4\,,\,{{x}^{2}}-2x-8$. This will change these equations into factors. Then, we will use these factors to solve the question further. After this simplification we will substitute the value of x as 4 to get the answer.
Complete step-by-step answer:
A limit basically means that how close is the given function close to the given limit. In reference to this question, we need to find the limit of the function \[\dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8}\] as x come closer to the point 4. To solve this function we will first simplify it just by using factorization. Factorization is a method in which we separate a quadratic equation into two simpler equations by taking solutions of that particular function. For example consider the equation \[{{x}^{2}}-5x+4\]. The solution of this function will be the one which will lead it to 0. Using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and taking a = 1, b = - 5, c = 4. Therefore,
$\begin{align}
& x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\left( 1 \right)\left( 4 \right)}}{2\left( 1 \right)} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{25-16}}{2} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{9}}{2} \\
& \Rightarrow x=\dfrac{5\pm 3}{2} \\
& \Rightarrow x=\dfrac{8}{2},\dfrac{2}{2} \\
& \Rightarrow x=4,1 \\
\end{align}$
Thus, we can now reduce the equation \[{{x}^{2}}-5x+4\] into the factors \[\left( x-1 \right)\left( x-4 \right)\]. Similarly, for \[{{x}^{2}}-2x-8\] we have,
$\begin{align}
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\left( 1 \right)\left( -8 \right)}}{2\left( 1 \right)} \\
& \Rightarrow x=\dfrac{2\pm \sqrt{4+32}}{2}=\dfrac{2\pm \sqrt{36}}{2} \\
& \Rightarrow x=\dfrac{2\pm 6}{2} \\
& \Rightarrow x=\dfrac{8}{2},\dfrac{-4}{2}=4,-2 \\
\end{align}$
So, we can have the factors of the equation \[{{x}^{2}}-2x-8\] as $\left( x-4 \right)\left( x+2 \right)$.
Now, after this step we are going to evaluate the function \[\displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)\] as the limit of x approaches to the number 4. We can do this by the following process,
\[\begin{align}
& \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\displaystyle \lim_{x \to 4}\dfrac{\left( x-4 \right)\left( x-1 \right)}{\left( x-4 \right)\left( x+2 \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\displaystyle \lim_{x \to 4}\left( \dfrac{x-1}{x+2} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\dfrac{4-1}{4+2}=\dfrac{3}{6}=\dfrac{1}{2} \\
\end{align}\]
Hence, the correct limit of the function given to us is $\dfrac{1}{2}$.
Note:
We can also factor the equations ${{x}^{2}}-5x+4\,,\,{{x}^{2}}-2x-8$ directly. For example,
$\begin{align}
& {{x}^{2}}-5x+4\,=0 \\
& \Rightarrow {{x}^{2}}-4x-1x+4=0 \\
& \Rightarrow x\left( x-4 \right)-1\left( x-4 \right)=0 \\
& \Rightarrow \left( x-1 \right)\left( x-4 \right)=0 \\
\end{align}$
Similarly, we can factorize the equation ${{x}^{2}}-2x-8$. We cannot substitute the value of x as 4 at first. This is due to the fact that the value of given function will be reduced to $\displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\dfrac{{{\left( 4 \right)}^{2}}-5\left( 4 \right)+4}{{{\left( 4 \right)}^{2}}-2\left( 4 \right)-8}=\dfrac{16-20+4}{16-8-8}$ where the denominator gets undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 4.
Complete step-by-step answer:
A limit basically means that how close is the given function close to the given limit. In reference to this question, we need to find the limit of the function \[\dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8}\] as x come closer to the point 4. To solve this function we will first simplify it just by using factorization. Factorization is a method in which we separate a quadratic equation into two simpler equations by taking solutions of that particular function. For example consider the equation \[{{x}^{2}}-5x+4\]. The solution of this function will be the one which will lead it to 0. Using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ and taking a = 1, b = - 5, c = 4. Therefore,
$\begin{align}
& x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\left( 1 \right)\left( 4 \right)}}{2\left( 1 \right)} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{25-16}}{2} \\
& \Rightarrow x=\dfrac{5\pm \sqrt{9}}{2} \\
& \Rightarrow x=\dfrac{5\pm 3}{2} \\
& \Rightarrow x=\dfrac{8}{2},\dfrac{2}{2} \\
& \Rightarrow x=4,1 \\
\end{align}$
Thus, we can now reduce the equation \[{{x}^{2}}-5x+4\] into the factors \[\left( x-1 \right)\left( x-4 \right)\]. Similarly, for \[{{x}^{2}}-2x-8\] we have,
$\begin{align}
& x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow x=\dfrac{-\left( -2 \right)\pm \sqrt{{{\left( -2 \right)}^{2}}-4\left( 1 \right)\left( -8 \right)}}{2\left( 1 \right)} \\
& \Rightarrow x=\dfrac{2\pm \sqrt{4+32}}{2}=\dfrac{2\pm \sqrt{36}}{2} \\
& \Rightarrow x=\dfrac{2\pm 6}{2} \\
& \Rightarrow x=\dfrac{8}{2},\dfrac{-4}{2}=4,-2 \\
\end{align}$
So, we can have the factors of the equation \[{{x}^{2}}-2x-8\] as $\left( x-4 \right)\left( x+2 \right)$.
Now, after this step we are going to evaluate the function \[\displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)\] as the limit of x approaches to the number 4. We can do this by the following process,
\[\begin{align}
& \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\displaystyle \lim_{x \to 4}\dfrac{\left( x-4 \right)\left( x-1 \right)}{\left( x-4 \right)\left( x+2 \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\displaystyle \lim_{x \to 4}\left( \dfrac{x-1}{x+2} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\dfrac{4-1}{4+2}=\dfrac{3}{6}=\dfrac{1}{2} \\
\end{align}\]
Hence, the correct limit of the function given to us is $\dfrac{1}{2}$.
Note:
We can also factor the equations ${{x}^{2}}-5x+4\,,\,{{x}^{2}}-2x-8$ directly. For example,
$\begin{align}
& {{x}^{2}}-5x+4\,=0 \\
& \Rightarrow {{x}^{2}}-4x-1x+4=0 \\
& \Rightarrow x\left( x-4 \right)-1\left( x-4 \right)=0 \\
& \Rightarrow \left( x-1 \right)\left( x-4 \right)=0 \\
\end{align}$
Similarly, we can factorize the equation ${{x}^{2}}-2x-8$. We cannot substitute the value of x as 4 at first. This is due to the fact that the value of given function will be reduced to $\displaystyle \lim_{x \to 4}\left( \dfrac{{{x}^{2}}-5x+4}{{{x}^{2}}-2x-8} \right)=\dfrac{{{\left( 4 \right)}^{2}}-5\left( 4 \right)+4}{{{\left( 4 \right)}^{2}}-2\left( 4 \right)-8}=\dfrac{16-20+4}{16-8-8}$ where the denominator gets undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 4.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

