
How do you evaluate the limit $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as $x \to 0$?
Answer
532.8k+ views
Hint: We will directly convert the function $2{{x}^{2}}+x$ into simpler form. Also, it is important to multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. This is going to be helpful here. We will use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. After these processes we will substitute the value of x as 0 to get the desired answer.
Complete step-by-step answer:
In this question we need to solve the limit for the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. The limit chosen here is $x \to 0$. Before solving it we will try to figure out the concept of limit in brief. A limit is simply the closeness of the given function to the given limit. Therefore, we need to find the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as x comes closer to the point 0.
To solve this question we will multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. Therefore, we get
\[\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{2x}{2x}\times \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)\].
Now, we will change the expression into division form shown below.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{\sin \left( 2x \right)}{2x}}{\dfrac{2{{x}^{2}}+x}{2x}} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)} \\
\end{align}\]
Since, \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] therefore, we can write \[\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\].
\[\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\]
To solve this question further we need to convert $2{{x}^{2}}+x$ into simpler form by the process of factorization. Therefore, we get $2{{x}^{2}}+x=x\left( 2x+1 \right)$. Thus,
\[\begin{align}
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{x\left( 2x+1 \right)}{2x} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{\left( 2\left( 0 \right)+1 \right)}{2}} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{1}{2}}=2 \\
\end{align}\]
Hence, the correct limit of the function given to us is 2.
Note:
We have used the term $\dfrac{2x}{2x}$ and multiplied it by the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We have done this, so as to get the term \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( 2x \right)}{2x}\]. Then, it will be easier for us to use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. Then, we will substitute the value of x = 0 and get the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$.
We cannot substitute the value of x as 0 directly. Otherwise, it will lead to no answer. Since, $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\sin \left( 2\left( 0 \right) \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin \left( 0 \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin 0}{0}$ which is undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 0.
Complete step-by-step answer:
In this question we need to solve the limit for the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. The limit chosen here is $x \to 0$. Before solving it we will try to figure out the concept of limit in brief. A limit is simply the closeness of the given function to the given limit. Therefore, we need to find the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as x comes closer to the point 0.
To solve this question we will multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. Therefore, we get
\[\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{2x}{2x}\times \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)\].
Now, we will change the expression into division form shown below.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{\sin \left( 2x \right)}{2x}}{\dfrac{2{{x}^{2}}+x}{2x}} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)} \\
\end{align}\]
Since, \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] therefore, we can write \[\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\].
\[\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\]
To solve this question further we need to convert $2{{x}^{2}}+x$ into simpler form by the process of factorization. Therefore, we get $2{{x}^{2}}+x=x\left( 2x+1 \right)$. Thus,
\[\begin{align}
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{x\left( 2x+1 \right)}{2x} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{\left( 2\left( 0 \right)+1 \right)}{2}} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{1}{2}}=2 \\
\end{align}\]
Hence, the correct limit of the function given to us is 2.
Note:
We have used the term $\dfrac{2x}{2x}$ and multiplied it by the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We have done this, so as to get the term \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( 2x \right)}{2x}\]. Then, it will be easier for us to use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. Then, we will substitute the value of x = 0 and get the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$.
We cannot substitute the value of x as 0 directly. Otherwise, it will lead to no answer. Since, $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\sin \left( 2\left( 0 \right) \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin \left( 0 \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin 0}{0}$ which is undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

