
How do you evaluate the limit $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as $x \to 0$?
Answer
449.7k+ views
Hint: We will directly convert the function $2{{x}^{2}}+x$ into simpler form. Also, it is important to multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. This is going to be helpful here. We will use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. After these processes we will substitute the value of x as 0 to get the desired answer.
Complete step-by-step answer:
In this question we need to solve the limit for the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. The limit chosen here is $x \to 0$. Before solving it we will try to figure out the concept of limit in brief. A limit is simply the closeness of the given function to the given limit. Therefore, we need to find the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as x comes closer to the point 0.
To solve this question we will multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. Therefore, we get
\[\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{2x}{2x}\times \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)\].
Now, we will change the expression into division form shown below.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{\sin \left( 2x \right)}{2x}}{\dfrac{2{{x}^{2}}+x}{2x}} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)} \\
\end{align}\]
Since, \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] therefore, we can write \[\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\].
\[\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\]
To solve this question further we need to convert $2{{x}^{2}}+x$ into simpler form by the process of factorization. Therefore, we get $2{{x}^{2}}+x=x\left( 2x+1 \right)$. Thus,
\[\begin{align}
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{x\left( 2x+1 \right)}{2x} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{\left( 2\left( 0 \right)+1 \right)}{2}} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{1}{2}}=2 \\
\end{align}\]
Hence, the correct limit of the function given to us is 2.
Note:
We have used the term $\dfrac{2x}{2x}$ and multiplied it by the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We have done this, so as to get the term \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( 2x \right)}{2x}\]. Then, it will be easier for us to use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. Then, we will substitute the value of x = 0 and get the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$.
We cannot substitute the value of x as 0 directly. Otherwise, it will lead to no answer. Since, $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\sin \left( 2\left( 0 \right) \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin \left( 0 \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin 0}{0}$ which is undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 0.
Complete step-by-step answer:
In this question we need to solve the limit for the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. The limit chosen here is $x \to 0$. Before solving it we will try to figure out the concept of limit in brief. A limit is simply the closeness of the given function to the given limit. Therefore, we need to find the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ as x comes closer to the point 0.
To solve this question we will multiply the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$ by $\dfrac{2x}{2x}$. Therefore, we get
\[\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{2x}{2x}\times \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)\].
Now, we will change the expression into division form shown below.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{\sin \left( 2x \right)}{2x}}{\dfrac{2{{x}^{2}}+x}{2x}} \right) \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)} \\
\end{align}\]
Since, \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] therefore, we can write \[\dfrac{\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2x} \right)}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\].
\[\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{2{{x}^{2}}+x}{2x} \right)}\]
To solve this question further we need to convert $2{{x}^{2}}+x$ into simpler form by the process of factorization. Therefore, we get $2{{x}^{2}}+x=x\left( 2x+1 \right)$. Thus,
\[\begin{align}
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\displaystyle \lim_{x \to 0}\left( \dfrac{x\left( 2x+1 \right)}{2x} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{\left( 2\left( 0 \right)+1 \right)}{2}} \\
& \Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{1}{\dfrac{1}{2}}=2 \\
\end{align}\]
Hence, the correct limit of the function given to us is 2.
Note:
We have used the term $\dfrac{2x}{2x}$ and multiplied it by the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$. We have done this, so as to get the term \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( 2x \right)}{2x}\]. Then, it will be easier for us to use the formula \[\displaystyle \lim_{x \to 0}\dfrac{\sin \left( x \right)}{x}=1\] to solve this question further. Then, we will substitute the value of x = 0 and get the limit of the function $\dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x}$.
We cannot substitute the value of x as 0 directly. Otherwise, it will lead to no answer. Since, $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin \left( 2x \right)}{2{{x}^{2}}+x} \right)=\dfrac{\sin \left( 2\left( 0 \right) \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin \left( 0 \right)}{2{{\left( 0 \right)}^{2}}+0}=\dfrac{\sin 0}{0}$ which is undefined. So, to restrict this problem we need to simplify the function first and then substitute the value x as 0.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
