
How do you evaluate the integral $ \int{\dfrac{dx}{{{x}^{3}}+1}} $ ?
Answer
558.3k+ views
Hint: In this question, we need to find the integral of $ \dfrac{1}{1+{{x}^{3}}} $ with respect to x. For this, we will first factorize $ 1+{{x}^{3}} $ using the identity $ \left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) $ . Then we will use a partial fraction to change the form $ \dfrac{1}{1+{{x}^{3}}} $ as the sum of terms which can be integrated easily. After that we will apply integration on each term and evaluate the integral.
Complete step by step answer:
Here we need to evaluate the integral $ \int{\dfrac{dx}{{{x}^{3}}+1}} $ . For this, let us first factorize the denominator of the given function $ \dfrac{1}{1+{{x}^{3}}} $ .
The denominator is $ {{x}^{3}}+1 $ . We know that $ {{\left( 1 \right)}^{3}}=1 $ . So we can say $ {{x}^{3}}+1={{x}^{3}}+{{1}^{3}} $ . It is of the form $ \left( {{a}^{3}}+{{b}^{3}} \right) $ so we can use the identity $ \left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) $ . We get $ \left( {{x}^{3}}+{{1}^{3}} \right)=\left( x+1 \right)\left( {{x}^{2}}-x+{{1}^{2}} \right) $ .
Thus the function becomes $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ .
Now let us use partial fraction for this i.e. we need to change the term $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ into sum of some terms that can be integral easily.
$ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ will be changed in the form as $ \dfrac{Ax+B}{\left( {{x}^{2}}-x+1 \right)}+\dfrac{C}{\left( x+1 \right)} $ so we have $ \dfrac{1}{{{x}^{3}}+1}=\dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{Ax+B}{{{x}^{2}}-x+1}+\dfrac{C}{x+1} $ .
Taking LCM as $ \left( x+1 \right)\left( {{x}^{2}}-x+1 \right) $ in the right side we get $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{\left( Ax+B \right)\left( x+1 \right)+C\left( {{x}^{2}}-x+1 \right)}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ .
Thus we will solve the following equation to find the value of A, B and C.
$ 1=\left( Ax+B \right)\left( x+1 \right)+C\left( {{x}^{2}}-x+1 \right) $ .
Let x = -1 we get $ 1=\left( -A+B \right)\left( -1+1 \right)+C\left( 1+1+1 \right)\Rightarrow 1=3C $ .
Simplifying it we get $ C=\dfrac{1}{3} $ .
Now putting value of C we get $ 1=\left( Ax+B \right)\left( x+1 \right)+\dfrac{1}{3}\left( {{x}^{2}}-x+1 \right) $ .
Taking x = 0 we get $ 1=\left( A\left( 0 \right)+B \right)\left( 0+1 \right)+\dfrac{1}{3}\left( 0-0+1 \right)\Rightarrow 1=B+\dfrac{1}{3} $ .
Simplifying it we get $ B=1-\dfrac{1}{3} $ .
Simplifying it we get $ B=\dfrac{2}{3} $ .
Now let x = 1 we get $ 1=\left( A+\dfrac{2}{3} \right)\left( 2 \right)+\dfrac{1}{3} $ .
Simplifying it we get $ 1=2A+\dfrac{5}{3} $ .
Simplifying it we get $ A=\dfrac{-1}{3} $ .
Hence we have found the value of A, B and C as \[\dfrac{-1}{3},\dfrac{2}{3}\text{ and }\dfrac{1}{3}\] respectively.
So the function becomes \[\dfrac{1}{{{x}^{3}}+1}=\dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{\dfrac{-1}{3}x+\dfrac{2}{3}}{{{x}^{2}}-x+1}+\dfrac{\dfrac{1}{3}}{x+1}\].
Simplifying it we get \[\dfrac{1}{{{x}^{3}}+1}=\dfrac{-1}{3}\left( \dfrac{x-2}{{{x}^{2}}-x+1} \right)+\dfrac{1}{3}\left( \dfrac{1}{x+1} \right)\].
Taking integral we get \[\int{\dfrac{1}{{{x}^{3}}+1}dx}=\int{\dfrac{-1}{3}\left( \dfrac{x-2}{{{x}^{2}}-x+1} \right)}dx+\int{\dfrac{1}{3}\left( \dfrac{1}{x+1} \right)}dx\].
Let us solve the integrals separately.
Taking $ {{I}_{1}}=\dfrac{-1}{3}\int{\dfrac{x-2}{{{x}^{2}}-x+1}dx}\text{ and }{{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{x+1}dx} $ .
So we get $ \int{\dfrac{1}{1+{{x}^{3}}}dx}={{I}_{1}}+{{I}_{2}}\cdots \cdots \cdots \left( 1 \right) $ .
Solving $ {{I}_{2}} $ first $ {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{x+1}dx} $ .
Let us substitute x+1 as u we get x+1 = u.
Taking derivative on both sides we get 1 = du so we get $ {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{u}dx} $ .
As we know that, $ \int{\dfrac{1}{x}dx}=\ln x+c $ so we get $ {{I}_{2}}=\dfrac{1}{3}\ln u+c $ .
Substituting value of u as (x+1) we get $ {{I}_{2}}=\dfrac{1}{3}\ln \left( x+1 \right)+c\cdots \cdots \cdots \left( 2 \right) $ .
Solving $ {{I}_{1}} $ , $ {{I}_{1}}=\dfrac{-1}{3}\int{\dfrac{x-2}{{{x}^{2}}-x+1}dx} $ .
To make the numerator as derivative of denominator let us multiply and divide function by 2 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\dfrac{2x-4}{{{x}^{2}}-x+1}dx} $ .
We still want the numerator as 2x-1. So let us split 4 into 1+3 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\dfrac{\left( 2x-1-3 \right)}{{{x}^{2}}-x+1}dx} $ .
Now let us separate the denominator for two numerator (2x-1) and -3 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}-\dfrac{3}{{{x}^{2}}-x+1} \right)dx} $ .
Separating the integrals we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}dx+\dfrac{3}{6} \right)\dfrac{1}{{{x}^{2}}-x+1}dx} $ .
Simplifying it we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}dx+\dfrac{1}{2} \right)\dfrac{1}{{{x}^{2}}-x+1}dx} $ .
Now let us solve them separately again.
Taking \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{2x-1}{{{x}^{2}}-x+1}dx}\text{ and }{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}-x+1}dx}\].
So $ {{I}_{1}} $ becomes $ {{I}_{1}}={{I}_{1}}'+{{I}_{1}}''\cdots \cdots \cdots \left( 3 \right) $ .
Solving $ {{I}_{1}}' $ we get \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{2x-1}{{{x}^{2}}-x+1}dx}\].
Let us substitute \[{{x}^{2}}-x+1\] as u we get \[{{x}^{2}}-x+1=u\].
Taking derivative on both sides we get $ \left( 2x-1 \right)dx=du $ .
So the integral becomes \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{1}{u}dx}\].
We know that $ \int{\dfrac{1}{x}dx}=\ln x $ so we get \[{{I}_{1}}'=\dfrac{-1}{6}\ln u\].
Substituting back the value of u as \[{{x}^{2}}-x+1\] we get \[{{I}_{1}}'=\dfrac{-1}{6}\ln \left( {{x}^{2}}-x+1 \right)\cdots \cdots \cdots \left( 4 \right)\].
Solving \[{{I}_{1}}''\] we have \[{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}-x+1}dx}\].
We have the denominator as \[{{x}^{2}}-x+1\]. Let us use the square method here. Adding and subtracting $ \dfrac{1}{4} $ in the expression we get \[{{x}^{2}}-x+1+\dfrac{1}{4}-\dfrac{1}{4}\].
Combining \[{{x}^{2}}-x+\dfrac{1}{4}\] as $ {{\left( x-\dfrac{1}{2} \right)}^{2}} $ and solving $ 1-\dfrac{1}{4} $ as $ \dfrac{3}{4} $ we get \[{{x}^{2}}-x+1={{\left( x-\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}\].
Taking LCM of 2 in the whole square term we get \[{{x}^{2}}-x+1={{\left( \dfrac{2x-1}{2} \right)}^{2}}+\dfrac{3}{4}\].
Simplifying we get \[{{x}^{2}}-x+1=\dfrac{{{\left( 2x-1 \right)}^{2}}}{4}+\dfrac{3}{4}\].
Therefore \[{{x}^{2}}-x+1=\dfrac{1}{4}\left( {{\left( 2x-1 \right)}^{2}}+3 \right)\].
So \[{{I}_{1}}''\] becomes \[{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{\dfrac{1}{4}\left( {{\left( 2x-1 \right)}^{2}}+3 \right)}dx}\].
Solving for \[\dfrac{1}{2}\text{ and }\dfrac{1}{4}\] we get \[{{I}_{1}}''=2\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+3}dx}\].
We can write 3 as $ {{\left( \sqrt{3} \right)}^{2}} $ so we get \[{{I}_{1}}''=2\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}}dx}\].
We know that $ \int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}}\left( \dfrac{x}{a} \right) $ .
For x as (2x-1) and a as $ \sqrt{3} $ we will have \[\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}}}=\dfrac{1}{2\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\].
(We have taken 2 as the denominator because the coefficient of x is 2 in squared terms).
So the integral becomes \[{{I}_{1}}''=\dfrac{2}{2\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\].
Simplifying we get \[{{I}_{1}}''=\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\cdots \cdots \cdots \left( 5 \right)\].
Putting values of (4) and (5) in (3) we get \[{{I}_{1}}=\dfrac{-1}{6}\ln \left( {{x}^{2}}-x+1 \right)+\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\cdots \cdots \cdots \left( 6 \right)\].
Putting values from (6) and (2) in (1) we get \[\int{\dfrac{1}{1+{{x}^{3}}}}dx=\dfrac{1}{3}\ln \left( x+1 \right)-\dfrac{1}{6}\ln \left( {{x}^{2}}-x+1 \right)+\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)+c\].
Which is our required integral.
Note:
Students should keep in mind the formula of integral and partial fractions to solve this sum. Note that in $ \int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}}dx $ if coefficient of x is b then we divide the answer by b. Take care of signs and constant terms. Note that for indefinite integral, adding a and c at the end is necessary.
Complete step by step answer:
Here we need to evaluate the integral $ \int{\dfrac{dx}{{{x}^{3}}+1}} $ . For this, let us first factorize the denominator of the given function $ \dfrac{1}{1+{{x}^{3}}} $ .
The denominator is $ {{x}^{3}}+1 $ . We know that $ {{\left( 1 \right)}^{3}}=1 $ . So we can say $ {{x}^{3}}+1={{x}^{3}}+{{1}^{3}} $ . It is of the form $ \left( {{a}^{3}}+{{b}^{3}} \right) $ so we can use the identity $ \left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) $ . We get $ \left( {{x}^{3}}+{{1}^{3}} \right)=\left( x+1 \right)\left( {{x}^{2}}-x+{{1}^{2}} \right) $ .
Thus the function becomes $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ .
Now let us use partial fraction for this i.e. we need to change the term $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ into sum of some terms that can be integral easily.
$ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ will be changed in the form as $ \dfrac{Ax+B}{\left( {{x}^{2}}-x+1 \right)}+\dfrac{C}{\left( x+1 \right)} $ so we have $ \dfrac{1}{{{x}^{3}}+1}=\dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{Ax+B}{{{x}^{2}}-x+1}+\dfrac{C}{x+1} $ .
Taking LCM as $ \left( x+1 \right)\left( {{x}^{2}}-x+1 \right) $ in the right side we get $ \dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{\left( Ax+B \right)\left( x+1 \right)+C\left( {{x}^{2}}-x+1 \right)}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)} $ .
Thus we will solve the following equation to find the value of A, B and C.
$ 1=\left( Ax+B \right)\left( x+1 \right)+C\left( {{x}^{2}}-x+1 \right) $ .
Let x = -1 we get $ 1=\left( -A+B \right)\left( -1+1 \right)+C\left( 1+1+1 \right)\Rightarrow 1=3C $ .
Simplifying it we get $ C=\dfrac{1}{3} $ .
Now putting value of C we get $ 1=\left( Ax+B \right)\left( x+1 \right)+\dfrac{1}{3}\left( {{x}^{2}}-x+1 \right) $ .
Taking x = 0 we get $ 1=\left( A\left( 0 \right)+B \right)\left( 0+1 \right)+\dfrac{1}{3}\left( 0-0+1 \right)\Rightarrow 1=B+\dfrac{1}{3} $ .
Simplifying it we get $ B=1-\dfrac{1}{3} $ .
Simplifying it we get $ B=\dfrac{2}{3} $ .
Now let x = 1 we get $ 1=\left( A+\dfrac{2}{3} \right)\left( 2 \right)+\dfrac{1}{3} $ .
Simplifying it we get $ 1=2A+\dfrac{5}{3} $ .
Simplifying it we get $ A=\dfrac{-1}{3} $ .
Hence we have found the value of A, B and C as \[\dfrac{-1}{3},\dfrac{2}{3}\text{ and }\dfrac{1}{3}\] respectively.
So the function becomes \[\dfrac{1}{{{x}^{3}}+1}=\dfrac{1}{\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)}=\dfrac{\dfrac{-1}{3}x+\dfrac{2}{3}}{{{x}^{2}}-x+1}+\dfrac{\dfrac{1}{3}}{x+1}\].
Simplifying it we get \[\dfrac{1}{{{x}^{3}}+1}=\dfrac{-1}{3}\left( \dfrac{x-2}{{{x}^{2}}-x+1} \right)+\dfrac{1}{3}\left( \dfrac{1}{x+1} \right)\].
Taking integral we get \[\int{\dfrac{1}{{{x}^{3}}+1}dx}=\int{\dfrac{-1}{3}\left( \dfrac{x-2}{{{x}^{2}}-x+1} \right)}dx+\int{\dfrac{1}{3}\left( \dfrac{1}{x+1} \right)}dx\].
Let us solve the integrals separately.
Taking $ {{I}_{1}}=\dfrac{-1}{3}\int{\dfrac{x-2}{{{x}^{2}}-x+1}dx}\text{ and }{{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{x+1}dx} $ .
So we get $ \int{\dfrac{1}{1+{{x}^{3}}}dx}={{I}_{1}}+{{I}_{2}}\cdots \cdots \cdots \left( 1 \right) $ .
Solving $ {{I}_{2}} $ first $ {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{x+1}dx} $ .
Let us substitute x+1 as u we get x+1 = u.
Taking derivative on both sides we get 1 = du so we get $ {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{u}dx} $ .
As we know that, $ \int{\dfrac{1}{x}dx}=\ln x+c $ so we get $ {{I}_{2}}=\dfrac{1}{3}\ln u+c $ .
Substituting value of u as (x+1) we get $ {{I}_{2}}=\dfrac{1}{3}\ln \left( x+1 \right)+c\cdots \cdots \cdots \left( 2 \right) $ .
Solving $ {{I}_{1}} $ , $ {{I}_{1}}=\dfrac{-1}{3}\int{\dfrac{x-2}{{{x}^{2}}-x+1}dx} $ .
To make the numerator as derivative of denominator let us multiply and divide function by 2 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\dfrac{2x-4}{{{x}^{2}}-x+1}dx} $ .
We still want the numerator as 2x-1. So let us split 4 into 1+3 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\dfrac{\left( 2x-1-3 \right)}{{{x}^{2}}-x+1}dx} $ .
Now let us separate the denominator for two numerator (2x-1) and -3 we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}-\dfrac{3}{{{x}^{2}}-x+1} \right)dx} $ .
Separating the integrals we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}dx+\dfrac{3}{6} \right)\dfrac{1}{{{x}^{2}}-x+1}dx} $ .
Simplifying it we get $ {{I}_{1}}=\dfrac{-1}{6}\int{\left( \dfrac{2x-1}{{{x}^{2}}-x+1}dx+\dfrac{1}{2} \right)\dfrac{1}{{{x}^{2}}-x+1}dx} $ .
Now let us solve them separately again.
Taking \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{2x-1}{{{x}^{2}}-x+1}dx}\text{ and }{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}-x+1}dx}\].
So $ {{I}_{1}} $ becomes $ {{I}_{1}}={{I}_{1}}'+{{I}_{1}}''\cdots \cdots \cdots \left( 3 \right) $ .
Solving $ {{I}_{1}}' $ we get \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{2x-1}{{{x}^{2}}-x+1}dx}\].
Let us substitute \[{{x}^{2}}-x+1\] as u we get \[{{x}^{2}}-x+1=u\].
Taking derivative on both sides we get $ \left( 2x-1 \right)dx=du $ .
So the integral becomes \[{{I}_{1}}'=\dfrac{-1}{6}\int{\dfrac{1}{u}dx}\].
We know that $ \int{\dfrac{1}{x}dx}=\ln x $ so we get \[{{I}_{1}}'=\dfrac{-1}{6}\ln u\].
Substituting back the value of u as \[{{x}^{2}}-x+1\] we get \[{{I}_{1}}'=\dfrac{-1}{6}\ln \left( {{x}^{2}}-x+1 \right)\cdots \cdots \cdots \left( 4 \right)\].
Solving \[{{I}_{1}}''\] we have \[{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{{{x}^{2}}-x+1}dx}\].
We have the denominator as \[{{x}^{2}}-x+1\]. Let us use the square method here. Adding and subtracting $ \dfrac{1}{4} $ in the expression we get \[{{x}^{2}}-x+1+\dfrac{1}{4}-\dfrac{1}{4}\].
Combining \[{{x}^{2}}-x+\dfrac{1}{4}\] as $ {{\left( x-\dfrac{1}{2} \right)}^{2}} $ and solving $ 1-\dfrac{1}{4} $ as $ \dfrac{3}{4} $ we get \[{{x}^{2}}-x+1={{\left( x-\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}\].
Taking LCM of 2 in the whole square term we get \[{{x}^{2}}-x+1={{\left( \dfrac{2x-1}{2} \right)}^{2}}+\dfrac{3}{4}\].
Simplifying we get \[{{x}^{2}}-x+1=\dfrac{{{\left( 2x-1 \right)}^{2}}}{4}+\dfrac{3}{4}\].
Therefore \[{{x}^{2}}-x+1=\dfrac{1}{4}\left( {{\left( 2x-1 \right)}^{2}}+3 \right)\].
So \[{{I}_{1}}''\] becomes \[{{I}_{1}}''=\dfrac{1}{2}\int{\dfrac{1}{\dfrac{1}{4}\left( {{\left( 2x-1 \right)}^{2}}+3 \right)}dx}\].
Solving for \[\dfrac{1}{2}\text{ and }\dfrac{1}{4}\] we get \[{{I}_{1}}''=2\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+3}dx}\].
We can write 3 as $ {{\left( \sqrt{3} \right)}^{2}} $ so we get \[{{I}_{1}}''=2\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}}dx}\].
We know that $ \int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}}\left( \dfrac{x}{a} \right) $ .
For x as (2x-1) and a as $ \sqrt{3} $ we will have \[\int{\dfrac{1}{{{\left( 2x-1 \right)}^{2}}+{{\left( \sqrt{3} \right)}^{2}}}}=\dfrac{1}{2\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\].
(We have taken 2 as the denominator because the coefficient of x is 2 in squared terms).
So the integral becomes \[{{I}_{1}}''=\dfrac{2}{2\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\].
Simplifying we get \[{{I}_{1}}''=\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\cdots \cdots \cdots \left( 5 \right)\].
Putting values of (4) and (5) in (3) we get \[{{I}_{1}}=\dfrac{-1}{6}\ln \left( {{x}^{2}}-x+1 \right)+\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)\cdots \cdots \cdots \left( 6 \right)\].
Putting values from (6) and (2) in (1) we get \[\int{\dfrac{1}{1+{{x}^{3}}}}dx=\dfrac{1}{3}\ln \left( x+1 \right)-\dfrac{1}{6}\ln \left( {{x}^{2}}-x+1 \right)+\dfrac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \dfrac{2x-1}{\sqrt{3}} \right)+c\].
Which is our required integral.
Note:
Students should keep in mind the formula of integral and partial fractions to solve this sum. Note that in $ \int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}}dx $ if coefficient of x is b then we divide the answer by b. Take care of signs and constant terms. Note that for indefinite integral, adding a and c at the end is necessary.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

