
Evaluate the given integral $\int{x\sin x\cos xdx}$
Answer
616.5k+ views
Hint: Assume the integral to be a quantity I. Then perform the integration by parts where the integrand is expressed as the product of two functions of x in the form $\int{\text{u}\cdot \text{vd}x}$, where u and v are two differentiable functions of x. The general formula for integrating an integral of form $\int{\text{u}\cdot \text{vd}x}$is,
\[\int{u\cdot v\text{d}x}\text{ = }u\int{v\text{d}x\text{ }-\text{ }\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]}\text{d}x}\]
Complete step-by-step answer:
Let us assume, I = $\int{x\sin x\cos xdx}$
Now, let us manipulate the integrand so that it can be expressed in a much simpler form.
We know, $\sin 2x\text{ = 2}\sin x\cos x$
Therefore, we can say, $\sin x\cos x\text{ = }\dfrac{\sin 2x}{2}$
Thus, the integration can be expressed as, I = $\dfrac{1}{2}\int{x\sin 2xdx}$
Let, $\text{I }\!\!'\!\!\text{ = }\int{x\sin 2xdx}$. Thus, $\text{I = }\dfrac{\text{I }\!\!'\!\!\text{ }}{2}$.
Now, observe that the integral $\text{I }\!\!'\!\!\text{ }$ is of the form $\int{\text{u}\cdot \text{vd}x}$, where u = x and v = sin 2x. Also, both u and v are differentiable functions of x. Thus, we can apply the process of integration by parts to find the value of $\text{I }\!\!'\!\!\text{ }$, and subsequently I.
\[\begin{align}
& \int{x\sin 2xdx} \\
& =\text{ }x\int{\sin 2xdx\text{ }-\text{ }\int{\left[ \dfrac{d\left( x \right)}{dx}\cdot \int{\sin 2xdx} \right]}}dx \\
& =\text{ }x\cdot \left( \dfrac{-\cos 2x}{2} \right)\text{ }-\text{ }\int{\left[ 1\cdot \left( \dfrac{-\cos 2x}{2} \right) \right]dx}\text{ }\left( \because \text{ }\int{\sin axdx}\text{ = }\dfrac{-\cos ax}{a} \right) \\
& =\text{ }\dfrac{-x\cos 2x}{2}\text{ + }\int{\dfrac{\cos 2x}{2}dx} \\
& =\text{ }\dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c }\left( \because \text{ }\int{\cos axdx}\text{ = }\dfrac{sinax}{a} \right) \\
\end{align}\]
where, c is the constant of integration.
Thus, we find the value of $\text{I }\!\!'\!\!\text{ }$ to be \[\dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c}\].
We know that, $\text{I = }\dfrac{\text{I }\!\!'\!\!\text{ }}{2}$
Therefore, the value of I
$\begin{align}
& =\text{ }\dfrac{1}{2}\cdot \left( \dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c} \right) \\
& =\text{ }\dfrac{-x\cos 2x}{4}\text{ + }\dfrac{\sin 2x}{8}\text{ + k} \\
\end{align}$
where, k is the constant of integration.
Note: i) While choosing u and v as functions of x for integration by parts, we need to select in such a way that $\int{vdx}$ and $\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]dx}$ are simple to integrate. For example, in this problem, if we choose u = xsinx and v = cosx before manipulating the integrand in an easier way, then it would have been much harder to integrate $\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]dx}$.
ii) u and v are generally chosen in such a way that these functions are kept in order of ILATE, where, I is Inverse function, L is logarithmic function, A is algebraic function, T is trigonometric function and E is exponential function.
\[\int{u\cdot v\text{d}x}\text{ = }u\int{v\text{d}x\text{ }-\text{ }\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]}\text{d}x}\]
Complete step-by-step answer:
Let us assume, I = $\int{x\sin x\cos xdx}$
Now, let us manipulate the integrand so that it can be expressed in a much simpler form.
We know, $\sin 2x\text{ = 2}\sin x\cos x$
Therefore, we can say, $\sin x\cos x\text{ = }\dfrac{\sin 2x}{2}$
Thus, the integration can be expressed as, I = $\dfrac{1}{2}\int{x\sin 2xdx}$
Let, $\text{I }\!\!'\!\!\text{ = }\int{x\sin 2xdx}$. Thus, $\text{I = }\dfrac{\text{I }\!\!'\!\!\text{ }}{2}$.
Now, observe that the integral $\text{I }\!\!'\!\!\text{ }$ is of the form $\int{\text{u}\cdot \text{vd}x}$, where u = x and v = sin 2x. Also, both u and v are differentiable functions of x. Thus, we can apply the process of integration by parts to find the value of $\text{I }\!\!'\!\!\text{ }$, and subsequently I.
\[\begin{align}
& \int{x\sin 2xdx} \\
& =\text{ }x\int{\sin 2xdx\text{ }-\text{ }\int{\left[ \dfrac{d\left( x \right)}{dx}\cdot \int{\sin 2xdx} \right]}}dx \\
& =\text{ }x\cdot \left( \dfrac{-\cos 2x}{2} \right)\text{ }-\text{ }\int{\left[ 1\cdot \left( \dfrac{-\cos 2x}{2} \right) \right]dx}\text{ }\left( \because \text{ }\int{\sin axdx}\text{ = }\dfrac{-\cos ax}{a} \right) \\
& =\text{ }\dfrac{-x\cos 2x}{2}\text{ + }\int{\dfrac{\cos 2x}{2}dx} \\
& =\text{ }\dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c }\left( \because \text{ }\int{\cos axdx}\text{ = }\dfrac{sinax}{a} \right) \\
\end{align}\]
where, c is the constant of integration.
Thus, we find the value of $\text{I }\!\!'\!\!\text{ }$ to be \[\dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c}\].
We know that, $\text{I = }\dfrac{\text{I }\!\!'\!\!\text{ }}{2}$
Therefore, the value of I
$\begin{align}
& =\text{ }\dfrac{1}{2}\cdot \left( \dfrac{-x\cos 2x}{2}\text{ + }\dfrac{\sin 2x}{4}\text{ + c} \right) \\
& =\text{ }\dfrac{-x\cos 2x}{4}\text{ + }\dfrac{\sin 2x}{8}\text{ + k} \\
\end{align}$
where, k is the constant of integration.
Note: i) While choosing u and v as functions of x for integration by parts, we need to select in such a way that $\int{vdx}$ and $\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]dx}$ are simple to integrate. For example, in this problem, if we choose u = xsinx and v = cosx before manipulating the integrand in an easier way, then it would have been much harder to integrate $\int{\left[ \dfrac{du}{dx}\cdot \int{vdx} \right]dx}$.
ii) u and v are generally chosen in such a way that these functions are kept in order of ILATE, where, I is Inverse function, L is logarithmic function, A is algebraic function, T is trigonometric function and E is exponential function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

