
Evaluate the given indefinite integral: $ \int{\sqrt{\dfrac{a-x}{a+x}}dx} $ ?
(a) $ a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)-\sqrt{{{a}^{2}}-{{x}^{2}}}+c $
(b) $ a{{\cos }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}+{{x}^{2}}}+c $
(c) $ {{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $
(d) $ a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
Answer
566.7k+ views
Hint: We start solving the problem by assuming $ x=a\cos \theta $ and finding $ dx $ in terms of $ d\theta $ . We then substitute these in the integrand and make the necessary calculations to proceed through the problem. We then make use of the facts $ \int{pdx}=px+c $ and $ \int{p\cos xdx}=p\sin x+c $ to get the value of integral in independent variable $ \theta $ . We then convert $ \theta $ to x from $ x=a\cos \theta $ and make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the given indefinite integral: $ \int{\sqrt{\dfrac{a-x}{a+x}}dx} $ .
Let us assume $ I=\int{\sqrt{\dfrac{a-x}{a+x}}dx} $ ---(1).
Let us assume $ x=a\cos \theta $ ---(2).
Let us apply differential on both sides of equation (2).
$ \Rightarrow d\left( x \right)=d\left( a\cos \theta \right) $ .
$ \Rightarrow dx=-a\sin \theta d\theta $ ---(3).
Let us substitute equations (2) and (3) in equation (1).
$ \Rightarrow I=\int{\sqrt{\dfrac{a-a\cos \theta }{a+a\cos \theta }}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{a\left( 1-\cos \theta \right)}{a\left( 1+\cos \theta \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\times \left( -a\sin \theta \right)d\theta } $ .
We know that $ 1-\cos \theta =2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right) $ and $ 1+\cos \theta =2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right) $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\dfrac{\sin \left( \dfrac{\theta }{2} \right)}{\cos \left( \dfrac{\theta }{2} \right)}\times \left( -a\sin \theta \right)d\theta } $ .
We know that $ \sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) $ .
$ \Rightarrow I=\int{\dfrac{\sin \left( \dfrac{\theta }{2} \right)}{\cos \left( \dfrac{\theta }{2} \right)}\times \left( -2a\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) \right)d\theta } $ .
$ \Rightarrow I=-a\int{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)d\theta } $ .
We know that $ 2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)=1-\cos \theta $ .
$ \Rightarrow I=-a\int{\left( 1-\cos \theta \right)d\theta } $ .
$ \Rightarrow I=\int{-ad\theta }+\int{a\cos \theta d\theta } $ .
We know that $ \int{pdx}=px+c $ and $ \int{p\cos xdx}=p\sin x+c $ .
$ \Rightarrow I=-a\theta +a\sin \theta +c $ ---(4).
But we have $ x=a\cos \theta $ .
$ \Rightarrow \dfrac{x}{a}=\cos \theta $ .
$ \Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{x}{a} \right) $ ---(5).
$ \Rightarrow \dfrac{x}{a}=\cos \theta $ .
$ \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow 1-{{\sin }^{2}}\theta =\dfrac{{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow 1-\dfrac{{{x}^{2}}}{{{a}^{2}}}={{\sin }^{2}}\theta $ .
$ \Rightarrow {{\sin }^{2}}\theta =\dfrac{{{a}^{2}}-{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow \sin \theta =\dfrac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} $ ---(6).
Let us substitute equations (5) and (6) in equation (4).
$ \Rightarrow I=-a{{\cos }^{-1}}\left( \dfrac{x}{a} \right)+a\times \left( \dfrac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} \right)+c $ .
$ \Rightarrow I=-a{{\cos }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
$ \Rightarrow I=-a\left( \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{x}{a} \right) \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c-\dfrac{a\pi }{2} $ .
Let us assume $ c-\dfrac{a\pi }{2}=C $ , as both are constants.
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+C $ .
So, we have found the result of the given definite integral as $ a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+C $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can also solve this problem as shown below:
We have $ I=\int{\sqrt{\dfrac{a-x}{a+x}}dx} $ . Let us multiply the numerator and denominator inside the square root with $ a-x $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{a-x}{a+x}\times \dfrac{a-x}{a-x}}dx} $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{{{\left( a-x \right)}^{2}}}{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I=\int{\dfrac{a-x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx}-\int{\dfrac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I={{I}_{1}}-{{I}_{2}} $ ---(7).
Let us first solve for $ {{I}_{1}} $ .
$ \Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ ---(8).
Let us assume $ x=a\sin \theta $ ---(9).
Let us apply a differential on both sides of the equation (9).
$ \Rightarrow d\left( x \right)=d\left( a\sin \theta \right) $ .
$ \Rightarrow dx=a\cos \theta d\theta $ ---(10).
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{\left( a\sin \theta \right)}^{2}}}}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}{{\cos }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{a\cos \theta }\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{ad\theta }\].
\[\Rightarrow {{I}_{1}}=a\theta +{{c}_{1}}\].
\[\Rightarrow {{I}_{1}}=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+{{c}_{1}}\] ---(11).
Let us first solve for $ {{I}_{2}} $ .
$ \Rightarrow {{I}_{2}}=\int{\dfrac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ ---(12).
Let us assume $ x=a\sin \theta $ ---(13).
Let us apply a differential on both sides of the equation (13).
$ \Rightarrow d\left( x \right)=d\left( a\sin \theta \right) $ .
$ \Rightarrow dx=a\cos \theta d\theta $ ---(14).
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}-{{\left( a\sin \theta \right)}^{2}}}}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}{{\cos }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{a\cos \theta }\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\left( a\sin \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=-a\cos \theta +{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{{{\cos }^{2}}\theta }+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{1-{{\sin }^{2}}\theta }+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{1-{{\left( \dfrac{x}{a} \right)}^{2}}}+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{\dfrac{{{a}^{2}}-{{x}^{2}}}{{{a}^{2}}}}+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{2}}\] ---(15).
Let us substitute equations (11) and (15) in equation (7).
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+{{c}_{1}}-\left( -\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{2}} \right) $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{1}}+{{c}_{2}} $ .
Let us assume $ {{c}_{1}}+{{c}_{2}}=c $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
Complete step by step answer:
According to the problem, we are asked to find the given indefinite integral: $ \int{\sqrt{\dfrac{a-x}{a+x}}dx} $ .
Let us assume $ I=\int{\sqrt{\dfrac{a-x}{a+x}}dx} $ ---(1).
Let us assume $ x=a\cos \theta $ ---(2).
Let us apply differential on both sides of equation (2).
$ \Rightarrow d\left( x \right)=d\left( a\cos \theta \right) $ .
$ \Rightarrow dx=-a\sin \theta d\theta $ ---(3).
Let us substitute equations (2) and (3) in equation (1).
$ \Rightarrow I=\int{\sqrt{\dfrac{a-a\cos \theta }{a+a\cos \theta }}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{a\left( 1-\cos \theta \right)}{a\left( 1+\cos \theta \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\times \left( -a\sin \theta \right)d\theta } $ .
We know that $ 1-\cos \theta =2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right) $ and $ 1+\cos \theta =2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right) $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)}}\times \left( -a\sin \theta \right)d\theta } $ .
$ \Rightarrow I=\int{\dfrac{\sin \left( \dfrac{\theta }{2} \right)}{\cos \left( \dfrac{\theta }{2} \right)}\times \left( -a\sin \theta \right)d\theta } $ .
We know that $ \sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) $ .
$ \Rightarrow I=\int{\dfrac{\sin \left( \dfrac{\theta }{2} \right)}{\cos \left( \dfrac{\theta }{2} \right)}\times \left( -2a\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) \right)d\theta } $ .
$ \Rightarrow I=-a\int{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)d\theta } $ .
We know that $ 2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)=1-\cos \theta $ .
$ \Rightarrow I=-a\int{\left( 1-\cos \theta \right)d\theta } $ .
$ \Rightarrow I=\int{-ad\theta }+\int{a\cos \theta d\theta } $ .
We know that $ \int{pdx}=px+c $ and $ \int{p\cos xdx}=p\sin x+c $ .
$ \Rightarrow I=-a\theta +a\sin \theta +c $ ---(4).
But we have $ x=a\cos \theta $ .
$ \Rightarrow \dfrac{x}{a}=\cos \theta $ .
$ \Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{x}{a} \right) $ ---(5).
$ \Rightarrow \dfrac{x}{a}=\cos \theta $ .
$ \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow 1-{{\sin }^{2}}\theta =\dfrac{{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow 1-\dfrac{{{x}^{2}}}{{{a}^{2}}}={{\sin }^{2}}\theta $ .
$ \Rightarrow {{\sin }^{2}}\theta =\dfrac{{{a}^{2}}-{{x}^{2}}}{{{a}^{2}}} $ .
$ \Rightarrow \sin \theta =\dfrac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} $ ---(6).
Let us substitute equations (5) and (6) in equation (4).
$ \Rightarrow I=-a{{\cos }^{-1}}\left( \dfrac{x}{a} \right)+a\times \left( \dfrac{\sqrt{{{a}^{2}}-{{x}^{2}}}}{a} \right)+c $ .
$ \Rightarrow I=-a{{\cos }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
$ \Rightarrow I=-a\left( \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{x}{a} \right) \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c-\dfrac{a\pi }{2} $ .
Let us assume $ c-\dfrac{a\pi }{2}=C $ , as both are constants.
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+C $ .
So, we have found the result of the given definite integral as $ a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+C $ .
$ \therefore, $ The correct option for the given problem is (d).
Note:
We can also solve this problem as shown below:
We have $ I=\int{\sqrt{\dfrac{a-x}{a+x}}dx} $ . Let us multiply the numerator and denominator inside the square root with $ a-x $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{a-x}{a+x}\times \dfrac{a-x}{a-x}}dx} $ .
$ \Rightarrow I=\int{\sqrt{\dfrac{{{\left( a-x \right)}^{2}}}{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I=\int{\dfrac{a-x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx}-\int{\dfrac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ .
$ \Rightarrow I={{I}_{1}}-{{I}_{2}} $ ---(7).
Let us first solve for $ {{I}_{1}} $ .
$ \Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ ---(8).
Let us assume $ x=a\sin \theta $ ---(9).
Let us apply a differential on both sides of the equation (9).
$ \Rightarrow d\left( x \right)=d\left( a\sin \theta \right) $ .
$ \Rightarrow dx=a\cos \theta d\theta $ ---(10).
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{\left( a\sin \theta \right)}^{2}}}}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{\sqrt{{{a}^{2}}{{\cos }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{a}{a\cos \theta }\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{1}}=\int{ad\theta }\].
\[\Rightarrow {{I}_{1}}=a\theta +{{c}_{1}}\].
\[\Rightarrow {{I}_{1}}=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+{{c}_{1}}\] ---(11).
Let us first solve for $ {{I}_{2}} $ .
$ \Rightarrow {{I}_{2}}=\int{\dfrac{x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx} $ ---(12).
Let us assume $ x=a\sin \theta $ ---(13).
Let us apply a differential on both sides of the equation (13).
$ \Rightarrow d\left( x \right)=d\left( a\sin \theta \right) $ .
$ \Rightarrow dx=a\cos \theta d\theta $ ---(14).
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}-{{\left( a\sin \theta \right)}^{2}}}}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{\sqrt{{{a}^{2}}{{\cos }^{2}}\theta }}\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( a\sin \theta \right)}{a\cos \theta }\left( a\cos \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=\int{\left( a\sin \theta \right)d\theta }\].
\[\Rightarrow {{I}_{2}}=-a\cos \theta +{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{{{\cos }^{2}}\theta }+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{1-{{\sin }^{2}}\theta }+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{1-{{\left( \dfrac{x}{a} \right)}^{2}}}+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-a\sqrt{\dfrac{{{a}^{2}}-{{x}^{2}}}{{{a}^{2}}}}+{{c}_{2}}\].
\[\Rightarrow {{I}_{2}}=-\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{2}}\] ---(15).
Let us substitute equations (11) and (15) in equation (7).
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+{{c}_{1}}-\left( -\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{2}} \right) $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+{{c}_{1}}+{{c}_{2}} $ .
Let us assume $ {{c}_{1}}+{{c}_{2}}=c $ .
$ \Rightarrow I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+\sqrt{{{a}^{2}}-{{x}^{2}}}+c $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

