
Evaluate the given expression : $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ .
Answer
581.7k+ views
Hint: It is given in the question that Evaluate $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ .
Firstly, we will pass the limit to check whether the given question is the form of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ . If this is the case then differentiate both the numerator and denominator and pass the limit to get the required answer.
Complete step-by-step answer:
It is given in the question that Evaluate $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$.
Now, pass the limit in the equation, we get,
Therefore, $\dfrac{{{2^3} - 6{{\left( 2 \right)}^2} + 11\left( 2 \right) - 6}}{{{2^2} - 6\left( 2 \right) + 8}}$
$ = \dfrac{{8 - 6\left( 4 \right) + 22 - 6}}{{4 - 12 + 8}}$
$ = \dfrac{{8 - 24 + 22 - 6}}{{4 - 12 + 8}}$
$ = \dfrac{0}{0}$
Since, we got the answer of $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ after passing the limit as $\dfrac{0}{0}$ . So, we will differentiate both the numerator and denominator then pass the limit.
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}\left( {{x^3} - 6{x^2} + 11x - 6} \right)}}{{\dfrac{d}{{dx}}\left( {{x^2} - 6x + 8} \right)}}} \right)$
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}{x^3} - \dfrac{d}{{dx}}6{x^2} + \dfrac{d}{{dx}}11x - \dfrac{d}{{dx}}6}}{{\dfrac{d}{{dx}}{x^2} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}8}}} \right)$
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{3{x^2} - 12x + 11}}{{2x - 6}}} \right)$
Now, passing the limit $x = 2$
$ = \left( {\dfrac{{3{{\left( 2 \right)}^2} - 12\left( 2 \right) + 11}}{{2\left( 2 \right) - 6}}} \right)$
$ = \left( {\dfrac{{3\left( 4 \right) - 24 + 11}}{{4 - 6}}} \right)$
$ = \left( {\dfrac{{12 - 24 + 11}}{{4 - 6}}} \right)$
$ = \left( {\dfrac{{ - 1}}{{ - 2}}} \right)$
$ = \dfrac{1}{2}$
Hence, $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}$.
Note: The above question can be solved by using another method i.e. method of factorization.
It is given in the question that Evaluate $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ .
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - {x^2} - 5{x^2} + 5x + 6x - 6}}{{{x^2} - 4x - 2x + 8}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2}\left( {x - 1} \right) - 5x\left( {x - 1} \right) + 6\left( {x - 1} \right)}}{{x\left( {x - 4} \right) - 2\left( {x - 4} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 3x - 2x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left[ {x\left( {x - 3} \right) - 2\left( {x - 3} \right)} \right]}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)}}$
Now, pass the limit $x = 2$ .
$ = \dfrac{{\left( {2 - 1} \right)\left( {2 - 3} \right)}}{{\left( {2 - 4} \right)}}$
$ = \dfrac{{1\left( { - 1} \right)}}{{\left( { - 2} \right)}}$
$ = \dfrac{1}{2}$
Hence, $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}$
Firstly, we will pass the limit to check whether the given question is the form of $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ . If this is the case then differentiate both the numerator and denominator and pass the limit to get the required answer.
Complete step-by-step answer:
It is given in the question that Evaluate $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$.
Now, pass the limit in the equation, we get,
Therefore, $\dfrac{{{2^3} - 6{{\left( 2 \right)}^2} + 11\left( 2 \right) - 6}}{{{2^2} - 6\left( 2 \right) + 8}}$
$ = \dfrac{{8 - 6\left( 4 \right) + 22 - 6}}{{4 - 12 + 8}}$
$ = \dfrac{{8 - 24 + 22 - 6}}{{4 - 12 + 8}}$
$ = \dfrac{0}{0}$
Since, we got the answer of $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ after passing the limit as $\dfrac{0}{0}$ . So, we will differentiate both the numerator and denominator then pass the limit.
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}\left( {{x^3} - 6{x^2} + 11x - 6} \right)}}{{\dfrac{d}{{dx}}\left( {{x^2} - 6x + 8} \right)}}} \right)$
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{\dfrac{d}{{dx}}{x^3} - \dfrac{d}{{dx}}6{x^2} + \dfrac{d}{{dx}}11x - \dfrac{d}{{dx}}6}}{{\dfrac{d}{{dx}}{x^2} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}8}}} \right)$
$ = \mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{3{x^2} - 12x + 11}}{{2x - 6}}} \right)$
Now, passing the limit $x = 2$
$ = \left( {\dfrac{{3{{\left( 2 \right)}^2} - 12\left( 2 \right) + 11}}{{2\left( 2 \right) - 6}}} \right)$
$ = \left( {\dfrac{{3\left( 4 \right) - 24 + 11}}{{4 - 6}}} \right)$
$ = \left( {\dfrac{{12 - 24 + 11}}{{4 - 6}}} \right)$
$ = \left( {\dfrac{{ - 1}}{{ - 2}}} \right)$
$ = \dfrac{1}{2}$
Hence, $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}$.
Note: The above question can be solved by using another method i.e. method of factorization.
It is given in the question that Evaluate $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}}$ .
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - {x^2} - 5{x^2} + 5x + 6x - 6}}{{{x^2} - 4x - 2x + 8}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2}\left( {x - 1} \right) - 5x\left( {x - 1} \right) + 6\left( {x - 1} \right)}}{{x\left( {x - 4} \right) - 2\left( {x - 4} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 3x - 2x + 6} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left[ {x\left( {x - 3} \right) - 2\left( {x - 3} \right)} \right]}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{\left( {x - 4} \right)}}$
Now, pass the limit $x = 2$ .
$ = \dfrac{{\left( {2 - 1} \right)\left( {2 - 3} \right)}}{{\left( {2 - 4} \right)}}$
$ = \dfrac{{1\left( { - 1} \right)}}{{\left( { - 2} \right)}}$
$ = \dfrac{1}{2}$
Hence, $\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 6x + 8}} = \dfrac{1}{2}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

