
Evaluate the given : \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \]
Answer
546.6k+ views
Hint: Here, we will use the basic identities of the trigonometric functions to find out the value of the given equation. So we will rewrite the terms given in the equation as a sum of degrees by applying the properties of the trigonometric function. Then we will use the periodicity of the trigonometric function and simplify the equation. We will then substitute the values of the function to get the value of the equation.
Complete step-by-step answer:
Let \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = T\].
First, we will simplify the given equation by writing the trigonometry functions of the equation in the form of the quadrants.
We can write \[\cos 225^\circ = \cos \left( {180^\circ + 45^\circ } \right)\], \[\sin 225^\circ = \sin \left( {180^\circ + 45^\circ } \right)\], \[\tan 495^\circ = \tan \left( {5 \times 90^\circ + 45^\circ } \right)\] and \[\cot 495^\circ = \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]. Therefore, we get
\[ \Rightarrow T = \cos \left( {180^\circ + 45^\circ } \right) - \sin \left( {180^\circ + 45^\circ } \right) + \tan \left( {5 \times 90^\circ + 45^\circ } \right) - \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]
Also we know that \[\cos \left( {180^\circ + \theta } \right) = - \cos \theta \] and \[\sin \left( {180^\circ + \theta } \right) = - \sin \theta \] as in the third quadrant both the sin and the cos function is negative.
\[\tan \left( {5 \times 90^\circ + \theta } \right) = - \cot \theta \] and \[\cot \left( {5 \times 90^\circ + \theta } \right) = - \tan \theta \] as in the second quadrant both the tan and the cot function is negative. Therefore the equation becomes
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) - \left( { - \sin \left( {45^\circ } \right)} \right) - \cot \left( {45^\circ } \right) - \left( { - \tan \left( {45^\circ } \right)} \right)\]
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) + \sin \left( {45^\circ } \right) - \cot \left( {45^\circ } \right) + \tan \left( {45^\circ } \right)\]
Now we will put the values of the trigonometric functions and solve this to get the value of the expression. Therefore, we get
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1\]
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1 = 0\]
\[ \Rightarrow \cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = 0\]
Hence, the value of the equation \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \] is 0.
Note: We should know the different properties of the trigonometric function and also in which quadrant which function is positive or negative as in the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sin and cosec function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive.
Complete step-by-step answer:
Let \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = T\].
First, we will simplify the given equation by writing the trigonometry functions of the equation in the form of the quadrants.
We can write \[\cos 225^\circ = \cos \left( {180^\circ + 45^\circ } \right)\], \[\sin 225^\circ = \sin \left( {180^\circ + 45^\circ } \right)\], \[\tan 495^\circ = \tan \left( {5 \times 90^\circ + 45^\circ } \right)\] and \[\cot 495^\circ = \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]. Therefore, we get
\[ \Rightarrow T = \cos \left( {180^\circ + 45^\circ } \right) - \sin \left( {180^\circ + 45^\circ } \right) + \tan \left( {5 \times 90^\circ + 45^\circ } \right) - \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]
Also we know that \[\cos \left( {180^\circ + \theta } \right) = - \cos \theta \] and \[\sin \left( {180^\circ + \theta } \right) = - \sin \theta \] as in the third quadrant both the sin and the cos function is negative.
\[\tan \left( {5 \times 90^\circ + \theta } \right) = - \cot \theta \] and \[\cot \left( {5 \times 90^\circ + \theta } \right) = - \tan \theta \] as in the second quadrant both the tan and the cot function is negative. Therefore the equation becomes
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) - \left( { - \sin \left( {45^\circ } \right)} \right) - \cot \left( {45^\circ } \right) - \left( { - \tan \left( {45^\circ } \right)} \right)\]
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) + \sin \left( {45^\circ } \right) - \cot \left( {45^\circ } \right) + \tan \left( {45^\circ } \right)\]
Now we will put the values of the trigonometric functions and solve this to get the value of the expression. Therefore, we get
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1\]
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1 = 0\]
\[ \Rightarrow \cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = 0\]
Hence, the value of the equation \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \] is 0.
Note: We should know the different properties of the trigonometric function and also in which quadrant which function is positive or negative as in the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sin and cosec function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

