
Evaluate the following using suitable identities:
(i) ${\left( {99} \right)^3}$ (ii) ${\left( {102} \right)^3}$ (iii) ${\left( {998} \right)^3}$
Answer
608.4k+ views
Hint: Try to break the number in terms of 10’s or 100’s.
For evaluating, we will be using these two identities:
$
{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right){\text{ }} \ldots \left( 1 \right) \\
{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right){\text{ }} \ldots \left( 2 \right) \\
$
(i) ${\left( {99} \right)^3}$
$
\Rightarrow {\left( {100 - 1} \right)^3} \\
\Rightarrow {\left( {100} \right)^3} - {\left( 1 \right)^3} - 3\left( {100} \right)\left( 1 \right)\left( {100 - 1} \right){\text{ }}\left( {{\text{using }}\left( 1 \right)} \right) \\
\Rightarrow 1000000 - 1 - 300\left( {100 - 1} \right) \\
\Rightarrow 1000000 - 1 - 30000 + 300 \\
\Rightarrow 970299 \\
$
(ii) ${\left( {102} \right)^3}$
$
\Rightarrow {\left( {100 + 2} \right)^3} \\
\Rightarrow {\left( {100} \right)^3} + {\left( 2 \right)^3} + 3\left( {100} \right)\left( 2 \right)\left( {100 + 2} \right){\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \\
\Rightarrow 1000000 + 8 + 600\left( {100 + 2} \right) \\
\Rightarrow 1000000 + 8 + 60000 + 1200 \\
\Rightarrow 1061208 \\
$
(iii) ${\left( {998} \right)^3}$
$
\Rightarrow {\left( {1000 - 2} \right)^3} \\
\Rightarrow {\left( {1000} \right)^3} - {\left( 2 \right)^3} - 3\left( {1000} \right)\left( 2 \right)\left( {1000 - 2} \right){\text{ }}\left( {{\text{using }}\left( 1 \right)} \right) \\
\Rightarrow 1000000000 - 8 - 6000\left( {1000 - 2} \right) \\
\Rightarrow 1000000000 - 8 - 6000000 + 12000 \\
\Rightarrow 994011992 \\
$
Note: Whenever you see a large valued number has a power 2 or 3, always try to write that number in terms of 10’s or 100’s and then use square or cubic formulas. Because finding squares or cubes of 10 and 100 is an easier task.
For evaluating, we will be using these two identities:
$
{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right){\text{ }} \ldots \left( 1 \right) \\
{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right){\text{ }} \ldots \left( 2 \right) \\
$
(i) ${\left( {99} \right)^3}$
$
\Rightarrow {\left( {100 - 1} \right)^3} \\
\Rightarrow {\left( {100} \right)^3} - {\left( 1 \right)^3} - 3\left( {100} \right)\left( 1 \right)\left( {100 - 1} \right){\text{ }}\left( {{\text{using }}\left( 1 \right)} \right) \\
\Rightarrow 1000000 - 1 - 300\left( {100 - 1} \right) \\
\Rightarrow 1000000 - 1 - 30000 + 300 \\
\Rightarrow 970299 \\
$
(ii) ${\left( {102} \right)^3}$
$
\Rightarrow {\left( {100 + 2} \right)^3} \\
\Rightarrow {\left( {100} \right)^3} + {\left( 2 \right)^3} + 3\left( {100} \right)\left( 2 \right)\left( {100 + 2} \right){\text{ }}\left( {{\text{using }}\left( 2 \right)} \right) \\
\Rightarrow 1000000 + 8 + 600\left( {100 + 2} \right) \\
\Rightarrow 1000000 + 8 + 60000 + 1200 \\
\Rightarrow 1061208 \\
$
(iii) ${\left( {998} \right)^3}$
$
\Rightarrow {\left( {1000 - 2} \right)^3} \\
\Rightarrow {\left( {1000} \right)^3} - {\left( 2 \right)^3} - 3\left( {1000} \right)\left( 2 \right)\left( {1000 - 2} \right){\text{ }}\left( {{\text{using }}\left( 1 \right)} \right) \\
\Rightarrow 1000000000 - 8 - 6000\left( {1000 - 2} \right) \\
\Rightarrow 1000000000 - 8 - 6000000 + 12000 \\
\Rightarrow 994011992 \\
$
Note: Whenever you see a large valued number has a power 2 or 3, always try to write that number in terms of 10’s or 100’s and then use square or cubic formulas. Because finding squares or cubes of 10 and 100 is an easier task.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


