
Evaluate the following limit- \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}\]
Answer
570.3k+ views
Hint: We know that the definition of modulus function. So, the modulus function of number x is defined as follows: \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x > 0 \\
& -x,\text{ }x < 0 \\
\end{align} \right.\]. Now, we should also know the definition of greatest integer function. So, the greatest integer function of a number x if \[n\le \text{ }x < \text{ }n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n\]. We should also know about the L-Hospital rule to solve this problem. If the limit of a function \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}\] is in the form of \[\dfrac{0}{0}\], then \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]. By using these concepts, we can find the value of \[\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}\].
Complete step by step answer:
Let us assume the value of \[\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}\] is equal to L.
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}.....(1)\]
Now, we should know the definition of modulus function. So, the modulus function of number x is defined as follows: \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x > 0 \\
& -x,\text{ }x < 0 \\
\end{align} \right.\].
Now, we should also know the definition of greatest integer function. So, the greatest integer function of a number x if \[n\le \text{ }x < \text{ }n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n\].
Now we should apply the definition of modulus function and greatest integer function in equation (1).
From the question, it is clear that the value of x is greater than 1.
So, the modulus value of \[\left| x \right|\] is equal to 1 as 1 is greater than 0. As x is greater than 1, the value of \[\left[ x \right]\] is equal to 1.
So, we get
\[\begin{align}
& \Rightarrow \left| x \right|=1....(2) \\
& \Rightarrow \left[ x \right]=1....(3) \\
\end{align}\]
We know that
\[\Rightarrow x\text{ } > 1\]
Now let us multiply with -1 on both sides.
\[\Rightarrow -x\text{ } < -1\]
Now we will add 1 on both sides.
\[\begin{align}
& \Rightarrow 1-x\text{ } < 1-1 \\
& \Rightarrow 1-x\text{ } < 0 \\
\end{align}\]
As the value of \[1-x\] is less than zero, then the value of \[\left[ 1-x \right]\] is equal to -1.
\[\Rightarrow \left[ 1-x \right]=-1.....(4)\]
By using the definition of modulus function, we can say that
\[\begin{align}
& \Rightarrow \left| 1-x \right|=-\left( 1-x \right) \\
& \Rightarrow \left| 1-x \right|=x-1...(5) \\
\end{align}\]
Now we should substitute equation (2), equation (3), equation (4) and equation (5) in equation (1). Then, we get
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\left( x-1 \right)\left( -1 \right)}....(6)\]
Now let us substitute the value of x is equal to 1 in equation (6), then we get
\[\begin{align}
& \Rightarrow L=\dfrac{\left( 1-1+\sin 0 \right)\left( -1 \right)}{-\left( 1-1 \right)\left( 1-1 \right)} \\
& \Rightarrow L=\dfrac{\left( 0 \right)\left( -1 \right)}{0} \\
& \Rightarrow L=\dfrac{0}{0}....(7) \\
\end{align}\]
From equation (7), it is clear that the value of L is equal to \[\dfrac{0}{0}\].
Now we should know the definition of L-Hospital. If the limit of a function \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}\] is in the form of \[\dfrac{0}{0}\], then \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\].
Now we should apply L-Hospital in equation (6).
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)}\]
We know that the value of \[\sin \dfrac{-\pi }{2}\] is equal to -1.
\[\begin{align}
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{-\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)}{-\dfrac{d}{dx}\left( x-1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{-1+\cos \left( x-1 \right)}{-1} \\
& \Rightarrow L=\dfrac{-1+\cos 0}{-1} \\
& \Rightarrow L=\dfrac{-1+1}{-1} \\
& \Rightarrow L=0.....(8) \\
\end{align}\]
From equation (8), it is clear that the value of L is equal to 0.
Note: Students may have a misconception that the modulus function of number x is defined as follows: \[\left| x \right|=\left\{ \begin{align}
& x,x < 0 \\
& -x,x > 0 \\
\end{align} \right.\]. Students may also have a misconception that the greatest integer function of a number x if \[n\le x < n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n+1\]. If this misconception, then we cannot get the correct answer.
& x,\text{ }x > 0 \\
& -x,\text{ }x < 0 \\
\end{align} \right.\]. Now, we should also know the definition of greatest integer function. So, the greatest integer function of a number x if \[n\le \text{ }x < \text{ }n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n\]. We should also know about the L-Hospital rule to solve this problem. If the limit of a function \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}\] is in the form of \[\dfrac{0}{0}\], then \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]. By using these concepts, we can find the value of \[\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}\].
Complete step by step answer:
Let us assume the value of \[\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}\] is equal to L.
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-\left| x \right|+\sin \left| 1-x \right| \right)\left( \sin \dfrac{\pi }{2}\left[ 1-x \right] \right)}{\left| 1-x \right|\left[ 1-x \right]}.....(1)\]
Now, we should know the definition of modulus function. So, the modulus function of number x is defined as follows: \[\left| x \right|=\left\{ \begin{align}
& x,\text{ }x > 0 \\
& -x,\text{ }x < 0 \\
\end{align} \right.\].
Now, we should also know the definition of greatest integer function. So, the greatest integer function of a number x if \[n\le \text{ }x < \text{ }n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n\].
Now we should apply the definition of modulus function and greatest integer function in equation (1).
From the question, it is clear that the value of x is greater than 1.
So, the modulus value of \[\left| x \right|\] is equal to 1 as 1 is greater than 0. As x is greater than 1, the value of \[\left[ x \right]\] is equal to 1.
So, we get
\[\begin{align}
& \Rightarrow \left| x \right|=1....(2) \\
& \Rightarrow \left[ x \right]=1....(3) \\
\end{align}\]
We know that
\[\Rightarrow x\text{ } > 1\]
Now let us multiply with -1 on both sides.
\[\Rightarrow -x\text{ } < -1\]
Now we will add 1 on both sides.
\[\begin{align}
& \Rightarrow 1-x\text{ } < 1-1 \\
& \Rightarrow 1-x\text{ } < 0 \\
\end{align}\]
As the value of \[1-x\] is less than zero, then the value of \[\left[ 1-x \right]\] is equal to -1.
\[\Rightarrow \left[ 1-x \right]=-1.....(4)\]
By using the definition of modulus function, we can say that
\[\begin{align}
& \Rightarrow \left| 1-x \right|=-\left( 1-x \right) \\
& \Rightarrow \left| 1-x \right|=x-1...(5) \\
\end{align}\]
Now we should substitute equation (2), equation (3), equation (4) and equation (5) in equation (1). Then, we get
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\left( x-1 \right)\left( -1 \right)}....(6)\]
Now let us substitute the value of x is equal to 1 in equation (6), then we get
\[\begin{align}
& \Rightarrow L=\dfrac{\left( 1-1+\sin 0 \right)\left( -1 \right)}{-\left( 1-1 \right)\left( 1-1 \right)} \\
& \Rightarrow L=\dfrac{\left( 0 \right)\left( -1 \right)}{0} \\
& \Rightarrow L=\dfrac{0}{0}....(7) \\
\end{align}\]
From equation (7), it is clear that the value of L is equal to \[\dfrac{0}{0}\].
Now we should know the definition of L-Hospital. If the limit of a function \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}\] is in the form of \[\dfrac{0}{0}\], then \[\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}=\displaystyle \lim_{x \to a}\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\].
Now we should apply L-Hospital in equation (6).
\[\Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)}\]
We know that the value of \[\sin \dfrac{-\pi }{2}\] is equal to -1.
\[\begin{align}
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)\left( \sin \dfrac{-\pi }{2} \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{-\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)}{-\dfrac{d}{dx}\left( x-1 \right)\left( -1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{\dfrac{d}{dx}\left( 1-x+\sin \left( x-1 \right) \right)}{-\dfrac{d}{dx}\left( x-1 \right)} \\
& \Rightarrow L=\displaystyle \lim_{x \to {{1}^{+}}}\dfrac{-1+\cos \left( x-1 \right)}{-1} \\
& \Rightarrow L=\dfrac{-1+\cos 0}{-1} \\
& \Rightarrow L=\dfrac{-1+1}{-1} \\
& \Rightarrow L=0.....(8) \\
\end{align}\]
From equation (8), it is clear that the value of L is equal to 0.
Note: Students may have a misconception that the modulus function of number x is defined as follows: \[\left| x \right|=\left\{ \begin{align}
& x,x < 0 \\
& -x,x > 0 \\
\end{align} \right.\]. Students may also have a misconception that the greatest integer function of a number x if \[n\le x < n+1\] where n is an integer is defined as follows: \[\left[ x \right]=n+1\]. If this misconception, then we cannot get the correct answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

