
Evaluate the following limit: \[\displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}}\]
\[\begin{align}
& \text{A}.\text{ 2}\sqrt{2} \\
& \text{B}.\text{ 4}\sqrt{2} \\
& \text{C}.\text{ }\sqrt{2} \\
& \text{D}.\text{ 4} \\
\end{align}\]
Answer
573k+ views
Hint: This question is consisting the elementary concept of LIMIT. Here, we see what happens, when we apply the limit $x \to 0$ then the given expression behaves like $\left( \dfrac{0}{0} \right)$ indeterminant form. Now further, we know that, in such types of questions, we should try to remove the term which causes such an indeterminant form. Now, after removing such constraints using rationalization, we get a normal trigonometric expression. These expressions can be reduced to a simpler form using some trigonometric identities. Now, we are able to put our limit to this final expression and get the appropriate answer.
Complete step-by-step solution:
Now, coming to the question, i.e.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& \Rightarrow \dfrac{{{\sin }^{2}}0}{\sqrt{2}-\sqrt{1+\cos 0}}=\dfrac{0}{\sqrt{2}-\sqrt{2}}=\left( \dfrac{0}{0} \right) \\
\end{align}\]
Look above, we are getting $\left( \dfrac{0}{0} \right)$ indeterminant form like this, we may also get some other indeterminant forms in some other questions. There are basically 7 indeterminant forms \[\left( \dfrac{0}{0},\dfrac{\infty }{\infty },\infty -\infty ,0\times \infty ,{{1}^{\infty }},{{0}^{0}},{{\infty }^{0}} \right)\]
Now, for rationalizing, see in denominator, we have $\left( \sqrt{2}-\sqrt{1+\cos x} \right)$ hence multiply $\left( \sqrt{2}+\sqrt{1+\cos x} \right)$ in numerator and denominator.
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( \sqrt{2}-\sqrt{1+\cos x} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}\text{ (rationalise the equation)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{2-\left( 1+\cos x \right)}\text{ (we know that }\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (a)} \\
\]
Now, we know that:
\[\begin{align}
& i)\cos 2x=2{{\cos }^{2}}x-1 \\
& ii)\cos 2x=1-2{{\sin }^{2}}x \\
\end{align}\]
We use (ii) identity in our question,
\[\cos 2x=1-2{{\sin }^{2}}x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
&\Rightarrow\cos 2\left( \dfrac{x}{2} \right)=1-2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \\
&\Rightarrow \cos x=1-2{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow \left( 1-\cos x \right)=2{{\sin }^{2}}\dfrac{x}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (b)} \\
\end{align}\]
Also, we know
\[\sin 2x=2\sin x\cos x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
& \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
&\Rightarrow {{\sin }^{2}}x=4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2}\text{ (take both side square) }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (c)} \\
\end{align}\]
Now, put equation (b) and equation (c) in equation (a):
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( 4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 2{{\sin }^{2}}\dfrac{x}{2} \right)} \\
\Rightarrow\displaystyle \lim_{x \to 0}\text{ 2}{{\cos }^{2}}\dfrac{x}{2}\left( \sqrt{2}+\sqrt{1+\cos x} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times \left( \sqrt{2}+\sqrt{1+1} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times 2\sqrt{2}\text{ }\left( \because \cos 0=1 \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }4\sqrt{2} \\ \]
Therefore, the correct option is B $4\sqrt{2}$.
Note: In the above question, we should be aware that, whenever we put the value of x in a trigonometric function, it will be in radian. In this question, we should also know the basics or elementary idea of trigonometric identities otherwise, questions will definitely get stuck in the middle portion. The questions are framed in such a way that could be able to check the multiple concepts. Sometimes we can also use the concept of series expansion (binomial, exponential, logarithmic, sin x, cos x, tan x) as far as the limit question is concerned.
Complete step-by-step solution:
Now, coming to the question, i.e.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& \Rightarrow \dfrac{{{\sin }^{2}}0}{\sqrt{2}-\sqrt{1+\cos 0}}=\dfrac{0}{\sqrt{2}-\sqrt{2}}=\left( \dfrac{0}{0} \right) \\
\end{align}\]
Look above, we are getting $\left( \dfrac{0}{0} \right)$ indeterminant form like this, we may also get some other indeterminant forms in some other questions. There are basically 7 indeterminant forms \[\left( \dfrac{0}{0},\dfrac{\infty }{\infty },\infty -\infty ,0\times \infty ,{{1}^{\infty }},{{0}^{0}},{{\infty }^{0}} \right)\]
Now, for rationalizing, see in denominator, we have $\left( \sqrt{2}-\sqrt{1+\cos x} \right)$ hence multiply $\left( \sqrt{2}+\sqrt{1+\cos x} \right)$ in numerator and denominator.
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( \sqrt{2}-\sqrt{1+\cos x} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}\text{ (rationalise the equation)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{2-\left( 1+\cos x \right)}\text{ (we know that }\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (a)} \\
\]
Now, we know that:
\[\begin{align}
& i)\cos 2x=2{{\cos }^{2}}x-1 \\
& ii)\cos 2x=1-2{{\sin }^{2}}x \\
\end{align}\]
We use (ii) identity in our question,
\[\cos 2x=1-2{{\sin }^{2}}x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
&\Rightarrow\cos 2\left( \dfrac{x}{2} \right)=1-2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \\
&\Rightarrow \cos x=1-2{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow \left( 1-\cos x \right)=2{{\sin }^{2}}\dfrac{x}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (b)} \\
\end{align}\]
Also, we know
\[\sin 2x=2\sin x\cos x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
& \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
&\Rightarrow {{\sin }^{2}}x=4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2}\text{ (take both side square) }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (c)} \\
\end{align}\]
Now, put equation (b) and equation (c) in equation (a):
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( 4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 2{{\sin }^{2}}\dfrac{x}{2} \right)} \\
\Rightarrow\displaystyle \lim_{x \to 0}\text{ 2}{{\cos }^{2}}\dfrac{x}{2}\left( \sqrt{2}+\sqrt{1+\cos x} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times \left( \sqrt{2}+\sqrt{1+1} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times 2\sqrt{2}\text{ }\left( \because \cos 0=1 \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }4\sqrt{2} \\ \]
Therefore, the correct option is B $4\sqrt{2}$.
Note: In the above question, we should be aware that, whenever we put the value of x in a trigonometric function, it will be in radian. In this question, we should also know the basics or elementary idea of trigonometric identities otherwise, questions will definitely get stuck in the middle portion. The questions are framed in such a way that could be able to check the multiple concepts. Sometimes we can also use the concept of series expansion (binomial, exponential, logarithmic, sin x, cos x, tan x) as far as the limit question is concerned.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

