
Evaluate the following limit: \[\displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}}\]
\[\begin{align}
& \text{A}.\text{ 2}\sqrt{2} \\
& \text{B}.\text{ 4}\sqrt{2} \\
& \text{C}.\text{ }\sqrt{2} \\
& \text{D}.\text{ 4} \\
\end{align}\]
Answer
509.1k+ views
Hint: This question is consisting the elementary concept of LIMIT. Here, we see what happens, when we apply the limit $x \to 0$ then the given expression behaves like $\left( \dfrac{0}{0} \right)$ indeterminant form. Now further, we know that, in such types of questions, we should try to remove the term which causes such an indeterminant form. Now, after removing such constraints using rationalization, we get a normal trigonometric expression. These expressions can be reduced to a simpler form using some trigonometric identities. Now, we are able to put our limit to this final expression and get the appropriate answer.
Complete step-by-step solution:
Now, coming to the question, i.e.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& \Rightarrow \dfrac{{{\sin }^{2}}0}{\sqrt{2}-\sqrt{1+\cos 0}}=\dfrac{0}{\sqrt{2}-\sqrt{2}}=\left( \dfrac{0}{0} \right) \\
\end{align}\]
Look above, we are getting $\left( \dfrac{0}{0} \right)$ indeterminant form like this, we may also get some other indeterminant forms in some other questions. There are basically 7 indeterminant forms \[\left( \dfrac{0}{0},\dfrac{\infty }{\infty },\infty -\infty ,0\times \infty ,{{1}^{\infty }},{{0}^{0}},{{\infty }^{0}} \right)\]
Now, for rationalizing, see in denominator, we have $\left( \sqrt{2}-\sqrt{1+\cos x} \right)$ hence multiply $\left( \sqrt{2}+\sqrt{1+\cos x} \right)$ in numerator and denominator.
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( \sqrt{2}-\sqrt{1+\cos x} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}\text{ (rationalise the equation)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{2-\left( 1+\cos x \right)}\text{ (we know that }\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (a)} \\
\]
Now, we know that:
\[\begin{align}
& i)\cos 2x=2{{\cos }^{2}}x-1 \\
& ii)\cos 2x=1-2{{\sin }^{2}}x \\
\end{align}\]
We use (ii) identity in our question,
\[\cos 2x=1-2{{\sin }^{2}}x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
&\Rightarrow\cos 2\left( \dfrac{x}{2} \right)=1-2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \\
&\Rightarrow \cos x=1-2{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow \left( 1-\cos x \right)=2{{\sin }^{2}}\dfrac{x}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (b)} \\
\end{align}\]
Also, we know
\[\sin 2x=2\sin x\cos x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
& \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
&\Rightarrow {{\sin }^{2}}x=4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2}\text{ (take both side square) }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (c)} \\
\end{align}\]
Now, put equation (b) and equation (c) in equation (a):
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( 4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 2{{\sin }^{2}}\dfrac{x}{2} \right)} \\
\Rightarrow\displaystyle \lim_{x \to 0}\text{ 2}{{\cos }^{2}}\dfrac{x}{2}\left( \sqrt{2}+\sqrt{1+\cos x} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times \left( \sqrt{2}+\sqrt{1+1} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times 2\sqrt{2}\text{ }\left( \because \cos 0=1 \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }4\sqrt{2} \\ \]
Therefore, the correct option is B $4\sqrt{2}$.
Note: In the above question, we should be aware that, whenever we put the value of x in a trigonometric function, it will be in radian. In this question, we should also know the basics or elementary idea of trigonometric identities otherwise, questions will definitely get stuck in the middle portion. The questions are framed in such a way that could be able to check the multiple concepts. Sometimes we can also use the concept of series expansion (binomial, exponential, logarithmic, sin x, cos x, tan x) as far as the limit question is concerned.
Complete step-by-step solution:
Now, coming to the question, i.e.
\[\begin{align}
& \displaystyle \lim_{x \to 0}\text{ }\dfrac{{{\sin }^{2}}x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& \Rightarrow \dfrac{{{\sin }^{2}}0}{\sqrt{2}-\sqrt{1+\cos 0}}=\dfrac{0}{\sqrt{2}-\sqrt{2}}=\left( \dfrac{0}{0} \right) \\
\end{align}\]
Look above, we are getting $\left( \dfrac{0}{0} \right)$ indeterminant form like this, we may also get some other indeterminant forms in some other questions. There are basically 7 indeterminant forms \[\left( \dfrac{0}{0},\dfrac{\infty }{\infty },\infty -\infty ,0\times \infty ,{{1}^{\infty }},{{0}^{0}},{{\infty }^{0}} \right)\]
Now, for rationalizing, see in denominator, we have $\left( \sqrt{2}-\sqrt{1+\cos x} \right)$ hence multiply $\left( \sqrt{2}+\sqrt{1+\cos x} \right)$ in numerator and denominator.
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( \sqrt{2}-\sqrt{1+\cos x} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}\text{ (rationalise the equation)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{2-\left( 1+\cos x \right)}\text{ (we know that }\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)} \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( {{\sin }^{2}}x \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 1-\cos x \right)}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (a)} \\
\]
Now, we know that:
\[\begin{align}
& i)\cos 2x=2{{\cos }^{2}}x-1 \\
& ii)\cos 2x=1-2{{\sin }^{2}}x \\
\end{align}\]
We use (ii) identity in our question,
\[\cos 2x=1-2{{\sin }^{2}}x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
&\Rightarrow\cos 2\left( \dfrac{x}{2} \right)=1-2{{\sin }^{2}}\left( \dfrac{x}{2} \right) \\
&\Rightarrow \cos x=1-2{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow \left( 1-\cos x \right)=2{{\sin }^{2}}\dfrac{x}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (b)} \\
\end{align}\]
Also, we know
\[\sin 2x=2\sin x\cos x\]
Replace $x \to \dfrac{x}{2}$ hence,
\[\begin{align}
& \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\
&\Rightarrow {{\sin }^{2}}x=4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2}\text{ (take both side square) }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (c)} \\
\end{align}\]
Now, put equation (b) and equation (c) in equation (a):
\[
\displaystyle \lim_{x \to 0}\text{ }\dfrac{\left( 4{{\sin }^{2}}\dfrac{x}{2}{{\cos }^{2}}\dfrac{x}{2} \right)\left( \sqrt{2}+\sqrt{1+\cos x} \right)}{\left( 2{{\sin }^{2}}\dfrac{x}{2} \right)} \\
\Rightarrow\displaystyle \lim_{x \to 0}\text{ 2}{{\cos }^{2}}\dfrac{x}{2}\left( \sqrt{2}+\sqrt{1+\cos x} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times \left( \sqrt{2}+\sqrt{1+1} \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }2\times 2\sqrt{2}\text{ }\left( \because \cos 0=1 \right) \\
\Rightarrow \displaystyle \lim_{x \to 0}\text{ }4\sqrt{2} \\ \]
Therefore, the correct option is B $4\sqrt{2}$.
Note: In the above question, we should be aware that, whenever we put the value of x in a trigonometric function, it will be in radian. In this question, we should also know the basics or elementary idea of trigonometric identities otherwise, questions will definitely get stuck in the middle portion. The questions are framed in such a way that could be able to check the multiple concepts. Sometimes we can also use the concept of series expansion (binomial, exponential, logarithmic, sin x, cos x, tan x) as far as the limit question is concerned.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
