
Evaluate the following integral : $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$
Answer
614.1k+ views
Hint: Convert \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]${{\sin }^{3}}x=\sin x\left( 1-{{\cos }^{2}}x \right)$and solve as two separate integrals and later add it.
Complete step-by-step answer:
We are given the following definite integral to evaluate,
$\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$
Now, let’s consider the integral as ‘I’.
So,
I=$\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$
Now, we will transform I as,
We know that, \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x\left( 1-{{\cos }^{2}}x \right)}dx$
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x-\sin x{{\cos }^{2}}x})dx\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x)+\int\limits_{0}^{\dfrac{\pi }{2}}{(-\sin x)}{{\cos }^{2}}x}dx\]
Let \[I=A+B\] where,
\[A=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x)}\]
\[B=\int\limits_{0}^{\dfrac{\pi }{2}}{(-\sin x)}{{\cos }^{2}}xdx\]
In B, let \[\cos x\]=t. So, \[(-\sin x)dx=dt\]
\[B=\int{{{t}^{2}}dt}=\dfrac{{{t}^{3}}}{3}=\dfrac{{{\cos }^{3}}x}{3}\]
Now,
\[I=-\cos x+\dfrac{{{\cos }^{3}}x}{3}\]
Now, we will apply the given limits,
\[\left[ -\cos x+\dfrac{{{\cos }^{3}}x}{3} \right]_{0}^{\dfrac{\pi }{2}}\]
\[\begin{align}
& =\left[ -\cos \dfrac{\pi }{2}+\dfrac{{{\cos }^{3}}\dfrac{\pi }{2}}{3} \right]-\left[ -\cos 0+\dfrac{{{\cos }^{3}}0}{3} \right] \\
& =0-\left[ -1+\dfrac{1}{3} \right]=1-\dfrac{1}{3}=\dfrac{2}{3} \\
\end{align}\]
So, the answer is \[\dfrac{2}{3}\].
Note: While solving the definite integral students must carefully apply the limits after simplifying the given integral and do calculations carefully to avoid error in answer.
Complete step-by-step answer:
We are given the following definite integral to evaluate,
$\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$
Now, let’s consider the integral as ‘I’.
So,
I=$\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}$
Now, we will transform I as,
We know that, \[{{\sin }^{2}}x=1-{{\cos }^{2}}x\]
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x\left( 1-{{\cos }^{2}}x \right)}dx$
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x-\sin x{{\cos }^{2}}x})dx\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x)+\int\limits_{0}^{\dfrac{\pi }{2}}{(-\sin x)}{{\cos }^{2}}x}dx\]
Let \[I=A+B\] where,
\[A=\int\limits_{0}^{\dfrac{\pi }{2}}{(\sin x)}\]
\[B=\int\limits_{0}^{\dfrac{\pi }{2}}{(-\sin x)}{{\cos }^{2}}xdx\]
In B, let \[\cos x\]=t. So, \[(-\sin x)dx=dt\]
\[B=\int{{{t}^{2}}dt}=\dfrac{{{t}^{3}}}{3}=\dfrac{{{\cos }^{3}}x}{3}\]
Now,
\[I=-\cos x+\dfrac{{{\cos }^{3}}x}{3}\]
Now, we will apply the given limits,
\[\left[ -\cos x+\dfrac{{{\cos }^{3}}x}{3} \right]_{0}^{\dfrac{\pi }{2}}\]
\[\begin{align}
& =\left[ -\cos \dfrac{\pi }{2}+\dfrac{{{\cos }^{3}}\dfrac{\pi }{2}}{3} \right]-\left[ -\cos 0+\dfrac{{{\cos }^{3}}0}{3} \right] \\
& =0-\left[ -1+\dfrac{1}{3} \right]=1-\dfrac{1}{3}=\dfrac{2}{3} \\
\end{align}\]
So, the answer is \[\dfrac{2}{3}\].
Note: While solving the definite integral students must carefully apply the limits after simplifying the given integral and do calculations carefully to avoid error in answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

