
Evaluate the following expression in the simplest form:
$\cos {{60}^{0}}\cos {{30}^{0}}-\sin {{60}^{0}}\sin {{30}^{0}}$
Answer
580.5k+ views
Hint: To solve the given expression in the simplest form we will use the trigonometric formulas that are needed here for that we have to analyze that what formula we can use for the given expression in the question or is it already in the form of some formula as that is the only way to solve it quickly. After using the formula we will arrange some terms to get our final answer.
Complete step-by-step solution
So, let’s begin our solution
If we look closely the given expression in the question is already in the form of a formula.
The formula is:
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
So, now we have seen that the two expressions are similar,
We just have to put the values of x and y as per the question and from that, we can solve this expression in the simplest way.
As per the question,
$\begin{align}
& x={{60}^{0}} \\
& y={{30}^{0}} \\
\end{align}$
Now the given expression has been reduced to: $\cos {{90}^{0}}$
And the value of $\cos {{90}^{0}}$ is 0.
Hence the value of expression $\cos {{60}^{0}}\cos {{30}^{0}}-\sin {{60}^{0}}\sin {{30}^{0}}$ given in the question is 0.
Note: We can also solve this question by putting the values of $\sin {{30}^{0}},\cos {{30}^{0}},\sin {{60}^{0}},\cos {{60}^{0}}$ in the given expression and then we have to subtract those two get the final answer. As it will take time, but in the above method that much effort is not needed.
Complete step-by-step solution
So, let’s begin our solution
If we look closely the given expression in the question is already in the form of a formula.
The formula is:
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
So, now we have seen that the two expressions are similar,
We just have to put the values of x and y as per the question and from that, we can solve this expression in the simplest way.
As per the question,
$\begin{align}
& x={{60}^{0}} \\
& y={{30}^{0}} \\
\end{align}$
Now the given expression has been reduced to: $\cos {{90}^{0}}$
And the value of $\cos {{90}^{0}}$ is 0.
Hence the value of expression $\cos {{60}^{0}}\cos {{30}^{0}}-\sin {{60}^{0}}\sin {{30}^{0}}$ given in the question is 0.
Note: We can also solve this question by putting the values of $\sin {{30}^{0}},\cos {{30}^{0}},\sin {{60}^{0}},\cos {{60}^{0}}$ in the given expression and then we have to subtract those two get the final answer. As it will take time, but in the above method that much effort is not needed.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

